Evaluate
28
Factor
2^{2}\times 7
Share
Copied to clipboard
\begin{array}{l}\phantom{29)}\phantom{1}\\29\overline{)812}\\\end{array}
Use the 1^{st} digit 8 from dividend 812
\begin{array}{l}\phantom{29)}0\phantom{2}\\29\overline{)812}\\\end{array}
Since 8 is less than 29, use the next digit 1 from dividend 812 and add 0 to the quotient
\begin{array}{l}\phantom{29)}0\phantom{3}\\29\overline{)812}\\\end{array}
Use the 2^{nd} digit 1 from dividend 812
\begin{array}{l}\phantom{29)}02\phantom{4}\\29\overline{)812}\\\phantom{29)}\underline{\phantom{}58\phantom{9}}\\\phantom{29)}23\\\end{array}
Find closest multiple of 29 to 81. We see that 2 \times 29 = 58 is the nearest. Now subtract 58 from 81 to get reminder 23. Add 2 to quotient.
\begin{array}{l}\phantom{29)}02\phantom{5}\\29\overline{)812}\\\phantom{29)}\underline{\phantom{}58\phantom{9}}\\\phantom{29)}232\\\end{array}
Use the 3^{rd} digit 2 from dividend 812
\begin{array}{l}\phantom{29)}028\phantom{6}\\29\overline{)812}\\\phantom{29)}\underline{\phantom{}58\phantom{9}}\\\phantom{29)}232\\\phantom{29)}\underline{\phantom{}232\phantom{}}\\\phantom{29)999}0\\\end{array}
Find closest multiple of 29 to 232. We see that 8 \times 29 = 232 is the nearest. Now subtract 232 from 232 to get reminder 0. Add 8 to quotient.
\text{Quotient: }28 \text{Reminder: }0
Since 0 is less than 29, stop the division. The reminder is 0. The topmost line 028 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 28.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}