Factor
3z\left(3z+1\right)\left(9z+1\right)
Evaluate
3z\left(3z+1\right)\left(9z+1\right)
Share
Copied to clipboard
3\left(27z^{3}+12z^{2}+z\right)
Factor out 3.
z\left(27z^{2}+12z+1\right)
Consider 27z^{3}+12z^{2}+z. Factor out z.
a+b=12 ab=27\times 1=27
Consider 27z^{2}+12z+1. Factor the expression by grouping. First, the expression needs to be rewritten as 27z^{2}+az+bz+1. To find a and b, set up a system to be solved.
1,27 3,9
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 27.
1+27=28 3+9=12
Calculate the sum for each pair.
a=3 b=9
The solution is the pair that gives sum 12.
\left(27z^{2}+3z\right)+\left(9z+1\right)
Rewrite 27z^{2}+12z+1 as \left(27z^{2}+3z\right)+\left(9z+1\right).
3z\left(9z+1\right)+9z+1
Factor out 3z in 27z^{2}+3z.
\left(9z+1\right)\left(3z+1\right)
Factor out common term 9z+1 by using distributive property.
3z\left(9z+1\right)\left(3z+1\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}