Factor
9x\left(9-5x\right)
Evaluate
9x\left(9-5x\right)
Graph
Share
Copied to clipboard
9\left(9x-5x^{2}\right)
Factor out 9.
x\left(9-5x\right)
Consider 9x-5x^{2}. Factor out x.
9x\left(-5x+9\right)
Rewrite the complete factored expression.
-45x^{2}+81x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-81±\sqrt{81^{2}}}{2\left(-45\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-81±81}{2\left(-45\right)}
Take the square root of 81^{2}.
x=\frac{-81±81}{-90}
Multiply 2 times -45.
x=\frac{0}{-90}
Now solve the equation x=\frac{-81±81}{-90} when ± is plus. Add -81 to 81.
x=0
Divide 0 by -90.
x=-\frac{162}{-90}
Now solve the equation x=\frac{-81±81}{-90} when ± is minus. Subtract 81 from -81.
x=\frac{9}{5}
Reduce the fraction \frac{-162}{-90} to lowest terms by extracting and canceling out 18.
-45x^{2}+81x=-45x\left(x-\frac{9}{5}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and \frac{9}{5} for x_{2}.
-45x^{2}+81x=-45x\times \frac{-5x+9}{-5}
Subtract \frac{9}{5} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-45x^{2}+81x=9x\left(-5x+9\right)
Cancel out 5, the greatest common factor in -45 and -5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}