Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(9+a^{2}\right)\left(9-a^{2}\right)
Rewrite 81-a^{4} as 9^{2}-\left(-a^{2}\right)^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(a^{2}+9\right)\left(-a^{2}+9\right)
Reorder the terms.
\left(3-a\right)\left(3+a\right)
Consider -a^{2}+9. Rewrite -a^{2}+9 as 3^{2}-a^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(-a+3\right)\left(a+3\right)
Reorder the terms.
\left(-a+3\right)\left(a+3\right)\left(a^{2}+9\right)
Rewrite the complete factored expression. Polynomial a^{2}+9 is not factored since it does not have any rational roots.