Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

81x^{2}-576x+237=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-576\right)±\sqrt{\left(-576\right)^{2}-4\times 81\times 237}}{2\times 81}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 81 for a, -576 for b, and 237 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-576\right)±\sqrt{331776-4\times 81\times 237}}{2\times 81}
Square -576.
x=\frac{-\left(-576\right)±\sqrt{331776-324\times 237}}{2\times 81}
Multiply -4 times 81.
x=\frac{-\left(-576\right)±\sqrt{331776-76788}}{2\times 81}
Multiply -324 times 237.
x=\frac{-\left(-576\right)±\sqrt{254988}}{2\times 81}
Add 331776 to -76788.
x=\frac{-\left(-576\right)±18\sqrt{787}}{2\times 81}
Take the square root of 254988.
x=\frac{576±18\sqrt{787}}{2\times 81}
The opposite of -576 is 576.
x=\frac{576±18\sqrt{787}}{162}
Multiply 2 times 81.
x=\frac{18\sqrt{787}+576}{162}
Now solve the equation x=\frac{576±18\sqrt{787}}{162} when ± is plus. Add 576 to 18\sqrt{787}.
x=\frac{\sqrt{787}+32}{9}
Divide 576+18\sqrt{787} by 162.
x=\frac{576-18\sqrt{787}}{162}
Now solve the equation x=\frac{576±18\sqrt{787}}{162} when ± is minus. Subtract 18\sqrt{787} from 576.
x=\frac{32-\sqrt{787}}{9}
Divide 576-18\sqrt{787} by 162.
x=\frac{\sqrt{787}+32}{9} x=\frac{32-\sqrt{787}}{9}
The equation is now solved.
81x^{2}-576x+237=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
81x^{2}-576x+237-237=-237
Subtract 237 from both sides of the equation.
81x^{2}-576x=-237
Subtracting 237 from itself leaves 0.
\frac{81x^{2}-576x}{81}=-\frac{237}{81}
Divide both sides by 81.
x^{2}+\left(-\frac{576}{81}\right)x=-\frac{237}{81}
Dividing by 81 undoes the multiplication by 81.
x^{2}-\frac{64}{9}x=-\frac{237}{81}
Reduce the fraction \frac{-576}{81} to lowest terms by extracting and canceling out 9.
x^{2}-\frac{64}{9}x=-\frac{79}{27}
Reduce the fraction \frac{-237}{81} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{64}{9}x+\left(-\frac{32}{9}\right)^{2}=-\frac{79}{27}+\left(-\frac{32}{9}\right)^{2}
Divide -\frac{64}{9}, the coefficient of the x term, by 2 to get -\frac{32}{9}. Then add the square of -\frac{32}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{64}{9}x+\frac{1024}{81}=-\frac{79}{27}+\frac{1024}{81}
Square -\frac{32}{9} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{64}{9}x+\frac{1024}{81}=\frac{787}{81}
Add -\frac{79}{27} to \frac{1024}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{32}{9}\right)^{2}=\frac{787}{81}
Factor x^{2}-\frac{64}{9}x+\frac{1024}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{32}{9}\right)^{2}}=\sqrt{\frac{787}{81}}
Take the square root of both sides of the equation.
x-\frac{32}{9}=\frac{\sqrt{787}}{9} x-\frac{32}{9}=-\frac{\sqrt{787}}{9}
Simplify.
x=\frac{\sqrt{787}+32}{9} x=\frac{32-\sqrt{787}}{9}
Add \frac{32}{9} to both sides of the equation.