Evaluate
\frac{2000000}{13}\approx 153846.153846154
Factor
\frac{2 ^ {7} \cdot 5 ^ {6}}{13} = 153846\frac{2}{13} = 153846.15384615384
Share
Copied to clipboard
\begin{array}{l}\phantom{52)}\phantom{1}\\52\overline{)8000000}\\\end{array}
Use the 1^{st} digit 8 from dividend 8000000
\begin{array}{l}\phantom{52)}0\phantom{2}\\52\overline{)8000000}\\\end{array}
Since 8 is less than 52, use the next digit 0 from dividend 8000000 and add 0 to the quotient
\begin{array}{l}\phantom{52)}0\phantom{3}\\52\overline{)8000000}\\\end{array}
Use the 2^{nd} digit 0 from dividend 8000000
\begin{array}{l}\phantom{52)}01\phantom{4}\\52\overline{)8000000}\\\phantom{52)}\underline{\phantom{}52\phantom{99999}}\\\phantom{52)}28\\\end{array}
Find closest multiple of 52 to 80. We see that 1 \times 52 = 52 is the nearest. Now subtract 52 from 80 to get reminder 28. Add 1 to quotient.
\begin{array}{l}\phantom{52)}01\phantom{5}\\52\overline{)8000000}\\\phantom{52)}\underline{\phantom{}52\phantom{99999}}\\\phantom{52)}280\\\end{array}
Use the 3^{rd} digit 0 from dividend 8000000
\begin{array}{l}\phantom{52)}015\phantom{6}\\52\overline{)8000000}\\\phantom{52)}\underline{\phantom{}52\phantom{99999}}\\\phantom{52)}280\\\phantom{52)}\underline{\phantom{}260\phantom{9999}}\\\phantom{52)9}20\\\end{array}
Find closest multiple of 52 to 280. We see that 5 \times 52 = 260 is the nearest. Now subtract 260 from 280 to get reminder 20. Add 5 to quotient.
\begin{array}{l}\phantom{52)}015\phantom{7}\\52\overline{)8000000}\\\phantom{52)}\underline{\phantom{}52\phantom{99999}}\\\phantom{52)}280\\\phantom{52)}\underline{\phantom{}260\phantom{9999}}\\\phantom{52)9}200\\\end{array}
Use the 4^{th} digit 0 from dividend 8000000
\begin{array}{l}\phantom{52)}0153\phantom{8}\\52\overline{)8000000}\\\phantom{52)}\underline{\phantom{}52\phantom{99999}}\\\phantom{52)}280\\\phantom{52)}\underline{\phantom{}260\phantom{9999}}\\\phantom{52)9}200\\\phantom{52)}\underline{\phantom{9}156\phantom{999}}\\\phantom{52)99}44\\\end{array}
Find closest multiple of 52 to 200. We see that 3 \times 52 = 156 is the nearest. Now subtract 156 from 200 to get reminder 44. Add 3 to quotient.
\begin{array}{l}\phantom{52)}0153\phantom{9}\\52\overline{)8000000}\\\phantom{52)}\underline{\phantom{}52\phantom{99999}}\\\phantom{52)}280\\\phantom{52)}\underline{\phantom{}260\phantom{9999}}\\\phantom{52)9}200\\\phantom{52)}\underline{\phantom{9}156\phantom{999}}\\\phantom{52)99}440\\\end{array}
Use the 5^{th} digit 0 from dividend 8000000
\begin{array}{l}\phantom{52)}01538\phantom{10}\\52\overline{)8000000}\\\phantom{52)}\underline{\phantom{}52\phantom{99999}}\\\phantom{52)}280\\\phantom{52)}\underline{\phantom{}260\phantom{9999}}\\\phantom{52)9}200\\\phantom{52)}\underline{\phantom{9}156\phantom{999}}\\\phantom{52)99}440\\\phantom{52)}\underline{\phantom{99}416\phantom{99}}\\\phantom{52)999}24\\\end{array}
Find closest multiple of 52 to 440. We see that 8 \times 52 = 416 is the nearest. Now subtract 416 from 440 to get reminder 24. Add 8 to quotient.
\begin{array}{l}\phantom{52)}01538\phantom{11}\\52\overline{)8000000}\\\phantom{52)}\underline{\phantom{}52\phantom{99999}}\\\phantom{52)}280\\\phantom{52)}\underline{\phantom{}260\phantom{9999}}\\\phantom{52)9}200\\\phantom{52)}\underline{\phantom{9}156\phantom{999}}\\\phantom{52)99}440\\\phantom{52)}\underline{\phantom{99}416\phantom{99}}\\\phantom{52)999}240\\\end{array}
Use the 6^{th} digit 0 from dividend 8000000
\begin{array}{l}\phantom{52)}015384\phantom{12}\\52\overline{)8000000}\\\phantom{52)}\underline{\phantom{}52\phantom{99999}}\\\phantom{52)}280\\\phantom{52)}\underline{\phantom{}260\phantom{9999}}\\\phantom{52)9}200\\\phantom{52)}\underline{\phantom{9}156\phantom{999}}\\\phantom{52)99}440\\\phantom{52)}\underline{\phantom{99}416\phantom{99}}\\\phantom{52)999}240\\\phantom{52)}\underline{\phantom{999}208\phantom{9}}\\\phantom{52)9999}32\\\end{array}
Find closest multiple of 52 to 240. We see that 4 \times 52 = 208 is the nearest. Now subtract 208 from 240 to get reminder 32. Add 4 to quotient.
\begin{array}{l}\phantom{52)}015384\phantom{13}\\52\overline{)8000000}\\\phantom{52)}\underline{\phantom{}52\phantom{99999}}\\\phantom{52)}280\\\phantom{52)}\underline{\phantom{}260\phantom{9999}}\\\phantom{52)9}200\\\phantom{52)}\underline{\phantom{9}156\phantom{999}}\\\phantom{52)99}440\\\phantom{52)}\underline{\phantom{99}416\phantom{99}}\\\phantom{52)999}240\\\phantom{52)}\underline{\phantom{999}208\phantom{9}}\\\phantom{52)9999}320\\\end{array}
Use the 7^{th} digit 0 from dividend 8000000
\begin{array}{l}\phantom{52)}0153846\phantom{14}\\52\overline{)8000000}\\\phantom{52)}\underline{\phantom{}52\phantom{99999}}\\\phantom{52)}280\\\phantom{52)}\underline{\phantom{}260\phantom{9999}}\\\phantom{52)9}200\\\phantom{52)}\underline{\phantom{9}156\phantom{999}}\\\phantom{52)99}440\\\phantom{52)}\underline{\phantom{99}416\phantom{99}}\\\phantom{52)999}240\\\phantom{52)}\underline{\phantom{999}208\phantom{9}}\\\phantom{52)9999}320\\\phantom{52)}\underline{\phantom{9999}312\phantom{}}\\\phantom{52)999999}8\\\end{array}
Find closest multiple of 52 to 320. We see that 6 \times 52 = 312 is the nearest. Now subtract 312 from 320 to get reminder 8. Add 6 to quotient.
\text{Quotient: }153846 \text{Reminder: }8
Since 8 is less than 52, stop the division. The reminder is 8. The topmost line 0153846 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 153846.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}