Evaluate
\frac{160}{9}\approx 17.777777778
Factor
\frac{2 ^ {5} \cdot 5}{3 ^ {2}} = 17\frac{7}{9} = 17.77777777777778
Share
Copied to clipboard
\begin{array}{l}\phantom{45)}\phantom{1}\\45\overline{)800}\\\end{array}
Use the 1^{st} digit 8 from dividend 800
\begin{array}{l}\phantom{45)}0\phantom{2}\\45\overline{)800}\\\end{array}
Since 8 is less than 45, use the next digit 0 from dividend 800 and add 0 to the quotient
\begin{array}{l}\phantom{45)}0\phantom{3}\\45\overline{)800}\\\end{array}
Use the 2^{nd} digit 0 from dividend 800
\begin{array}{l}\phantom{45)}01\phantom{4}\\45\overline{)800}\\\phantom{45)}\underline{\phantom{}45\phantom{9}}\\\phantom{45)}35\\\end{array}
Find closest multiple of 45 to 80. We see that 1 \times 45 = 45 is the nearest. Now subtract 45 from 80 to get reminder 35. Add 1 to quotient.
\begin{array}{l}\phantom{45)}01\phantom{5}\\45\overline{)800}\\\phantom{45)}\underline{\phantom{}45\phantom{9}}\\\phantom{45)}350\\\end{array}
Use the 3^{rd} digit 0 from dividend 800
\begin{array}{l}\phantom{45)}017\phantom{6}\\45\overline{)800}\\\phantom{45)}\underline{\phantom{}45\phantom{9}}\\\phantom{45)}350\\\phantom{45)}\underline{\phantom{}315\phantom{}}\\\phantom{45)9}35\\\end{array}
Find closest multiple of 45 to 350. We see that 7 \times 45 = 315 is the nearest. Now subtract 315 from 350 to get reminder 35. Add 7 to quotient.
\text{Quotient: }17 \text{Reminder: }35
Since 35 is less than 45, stop the division. The reminder is 35. The topmost line 017 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 17.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}