Evaluate
\frac{80}{9}\approx 8.888888889
Factor
\frac{2 ^ {4} \cdot 5}{3 ^ {2}} = 8\frac{8}{9} = 8.88888888888889
Share
Copied to clipboard
\begin{array}{l}\phantom{90)}\phantom{1}\\90\overline{)800}\\\end{array}
Use the 1^{st} digit 8 from dividend 800
\begin{array}{l}\phantom{90)}0\phantom{2}\\90\overline{)800}\\\end{array}
Since 8 is less than 90, use the next digit 0 from dividend 800 and add 0 to the quotient
\begin{array}{l}\phantom{90)}0\phantom{3}\\90\overline{)800}\\\end{array}
Use the 2^{nd} digit 0 from dividend 800
\begin{array}{l}\phantom{90)}00\phantom{4}\\90\overline{)800}\\\end{array}
Since 80 is less than 90, use the next digit 0 from dividend 800 and add 0 to the quotient
\begin{array}{l}\phantom{90)}00\phantom{5}\\90\overline{)800}\\\end{array}
Use the 3^{rd} digit 0 from dividend 800
\begin{array}{l}\phantom{90)}008\phantom{6}\\90\overline{)800}\\\phantom{90)}\underline{\phantom{}720\phantom{}}\\\phantom{90)9}80\\\end{array}
Find closest multiple of 90 to 800. We see that 8 \times 90 = 720 is the nearest. Now subtract 720 from 800 to get reminder 80. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }80
Since 80 is less than 90, stop the division. The reminder is 80. The topmost line 008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}