Evaluate
\frac{10}{9}\approx 1.111111111
Factor
\frac{2 \cdot 5}{3 ^ {2}} = 1\frac{1}{9} = 1.1111111111111112
Share
Copied to clipboard
\begin{array}{l}\phantom{720)}\phantom{1}\\720\overline{)800}\\\end{array}
Use the 1^{st} digit 8 from dividend 800
\begin{array}{l}\phantom{720)}0\phantom{2}\\720\overline{)800}\\\end{array}
Since 8 is less than 720, use the next digit 0 from dividend 800 and add 0 to the quotient
\begin{array}{l}\phantom{720)}0\phantom{3}\\720\overline{)800}\\\end{array}
Use the 2^{nd} digit 0 from dividend 800
\begin{array}{l}\phantom{720)}00\phantom{4}\\720\overline{)800}\\\end{array}
Since 80 is less than 720, use the next digit 0 from dividend 800 and add 0 to the quotient
\begin{array}{l}\phantom{720)}00\phantom{5}\\720\overline{)800}\\\end{array}
Use the 3^{rd} digit 0 from dividend 800
\begin{array}{l}\phantom{720)}001\phantom{6}\\720\overline{)800}\\\phantom{720)}\underline{\phantom{}720\phantom{}}\\\phantom{720)9}80\\\end{array}
Find closest multiple of 720 to 800. We see that 1 \times 720 = 720 is the nearest. Now subtract 720 from 800 to get reminder 80. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }80
Since 80 is less than 720, stop the division. The reminder is 80. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}