Evaluate
\frac{16}{11}\approx 1.454545455
Factor
\frac{2 ^ {4}}{11} = 1\frac{5}{11} = 1.4545454545454546
Share
Copied to clipboard
\begin{array}{l}\phantom{550)}\phantom{1}\\550\overline{)800}\\\end{array}
Use the 1^{st} digit 8 from dividend 800
\begin{array}{l}\phantom{550)}0\phantom{2}\\550\overline{)800}\\\end{array}
Since 8 is less than 550, use the next digit 0 from dividend 800 and add 0 to the quotient
\begin{array}{l}\phantom{550)}0\phantom{3}\\550\overline{)800}\\\end{array}
Use the 2^{nd} digit 0 from dividend 800
\begin{array}{l}\phantom{550)}00\phantom{4}\\550\overline{)800}\\\end{array}
Since 80 is less than 550, use the next digit 0 from dividend 800 and add 0 to the quotient
\begin{array}{l}\phantom{550)}00\phantom{5}\\550\overline{)800}\\\end{array}
Use the 3^{rd} digit 0 from dividend 800
\begin{array}{l}\phantom{550)}001\phantom{6}\\550\overline{)800}\\\phantom{550)}\underline{\phantom{}550\phantom{}}\\\phantom{550)}250\\\end{array}
Find closest multiple of 550 to 800. We see that 1 \times 550 = 550 is the nearest. Now subtract 550 from 800 to get reminder 250. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }250
Since 250 is less than 550, stop the division. The reminder is 250. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}