Evaluate
16
Factor
2^{4}
Share
Copied to clipboard
\begin{array}{l}\phantom{50)}\phantom{1}\\50\overline{)800}\\\end{array}
Use the 1^{st} digit 8 from dividend 800
\begin{array}{l}\phantom{50)}0\phantom{2}\\50\overline{)800}\\\end{array}
Since 8 is less than 50, use the next digit 0 from dividend 800 and add 0 to the quotient
\begin{array}{l}\phantom{50)}0\phantom{3}\\50\overline{)800}\\\end{array}
Use the 2^{nd} digit 0 from dividend 800
\begin{array}{l}\phantom{50)}01\phantom{4}\\50\overline{)800}\\\phantom{50)}\underline{\phantom{}50\phantom{9}}\\\phantom{50)}30\\\end{array}
Find closest multiple of 50 to 80. We see that 1 \times 50 = 50 is the nearest. Now subtract 50 from 80 to get reminder 30. Add 1 to quotient.
\begin{array}{l}\phantom{50)}01\phantom{5}\\50\overline{)800}\\\phantom{50)}\underline{\phantom{}50\phantom{9}}\\\phantom{50)}300\\\end{array}
Use the 3^{rd} digit 0 from dividend 800
\begin{array}{l}\phantom{50)}016\phantom{6}\\50\overline{)800}\\\phantom{50)}\underline{\phantom{}50\phantom{9}}\\\phantom{50)}300\\\phantom{50)}\underline{\phantom{}300\phantom{}}\\\phantom{50)999}0\\\end{array}
Find closest multiple of 50 to 300. We see that 6 \times 50 = 300 is the nearest. Now subtract 300 from 300 to get reminder 0. Add 6 to quotient.
\text{Quotient: }16 \text{Reminder: }0
Since 0 is less than 50, stop the division. The reminder is 0. The topmost line 016 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}