Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\left(40x+16+25x^{2}\right)
Factor out 2.
\left(5x+4\right)^{2}
Consider 40x+16+25x^{2}. Use the perfect square formula, a^{2}+2ab+b^{2}=\left(a+b\right)^{2}, where a=5x and b=4.
2\left(5x+4\right)^{2}
Rewrite the complete factored expression.
factor(50x^{2}+80x+32)
This trinomial has the form of a trinomial square, perhaps multiplied by a common factor. Trinomial squares can be factored by finding the square roots of the leading and trailing terms.
gcf(50,80,32)=2
Find the greatest common factor of the coefficients.
2\left(25x^{2}+40x+16\right)
Factor out 2.
\sqrt{25x^{2}}=5x
Find the square root of the leading term, 25x^{2}.
\sqrt{16}=4
Find the square root of the trailing term, 16.
2\left(5x+4\right)^{2}
The trinomial square is the square of the binomial that is the sum or difference of the square roots of the leading and trailing terms, with the sign determined by the sign of the middle term of the trinomial square.
50x^{2}+80x+32=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-80±\sqrt{80^{2}-4\times 50\times 32}}{2\times 50}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-80±\sqrt{6400-4\times 50\times 32}}{2\times 50}
Square 80.
x=\frac{-80±\sqrt{6400-200\times 32}}{2\times 50}
Multiply -4 times 50.
x=\frac{-80±\sqrt{6400-6400}}{2\times 50}
Multiply -200 times 32.
x=\frac{-80±\sqrt{0}}{2\times 50}
Add 6400 to -6400.
x=\frac{-80±0}{2\times 50}
Take the square root of 0.
x=\frac{-80±0}{100}
Multiply 2 times 50.
50x^{2}+80x+32=50\left(x-\left(-\frac{4}{5}\right)\right)\left(x-\left(-\frac{4}{5}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{4}{5} for x_{1} and -\frac{4}{5} for x_{2}.
50x^{2}+80x+32=50\left(x+\frac{4}{5}\right)\left(x+\frac{4}{5}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
50x^{2}+80x+32=50\times \frac{5x+4}{5}\left(x+\frac{4}{5}\right)
Add \frac{4}{5} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
50x^{2}+80x+32=50\times \frac{5x+4}{5}\times \frac{5x+4}{5}
Add \frac{4}{5} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
50x^{2}+80x+32=50\times \frac{\left(5x+4\right)\left(5x+4\right)}{5\times 5}
Multiply \frac{5x+4}{5} times \frac{5x+4}{5} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
50x^{2}+80x+32=50\times \frac{\left(5x+4\right)\left(5x+4\right)}{25}
Multiply 5 times 5.
50x^{2}+80x+32=2\left(5x+4\right)\left(5x+4\right)
Cancel out 25, the greatest common factor in 50 and 25.