Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

80x^{2}-399x-358=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-399\right)±\sqrt{\left(-399\right)^{2}-4\times 80\left(-358\right)}}{2\times 80}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-399\right)±\sqrt{159201-4\times 80\left(-358\right)}}{2\times 80}
Square -399.
x=\frac{-\left(-399\right)±\sqrt{159201-320\left(-358\right)}}{2\times 80}
Multiply -4 times 80.
x=\frac{-\left(-399\right)±\sqrt{159201+114560}}{2\times 80}
Multiply -320 times -358.
x=\frac{-\left(-399\right)±\sqrt{273761}}{2\times 80}
Add 159201 to 114560.
x=\frac{399±\sqrt{273761}}{2\times 80}
The opposite of -399 is 399.
x=\frac{399±\sqrt{273761}}{160}
Multiply 2 times 80.
x=\frac{\sqrt{273761}+399}{160}
Now solve the equation x=\frac{399±\sqrt{273761}}{160} when ± is plus. Add 399 to \sqrt{273761}.
x=\frac{399-\sqrt{273761}}{160}
Now solve the equation x=\frac{399±\sqrt{273761}}{160} when ± is minus. Subtract \sqrt{273761} from 399.
80x^{2}-399x-358=80\left(x-\frac{\sqrt{273761}+399}{160}\right)\left(x-\frac{399-\sqrt{273761}}{160}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{399+\sqrt{273761}}{160} for x_{1} and \frac{399-\sqrt{273761}}{160} for x_{2}.