Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

80x^{2}+415x-351=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-415±\sqrt{415^{2}-4\times 80\left(-351\right)}}{2\times 80}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 80 for a, 415 for b, and -351 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-415±\sqrt{172225-4\times 80\left(-351\right)}}{2\times 80}
Square 415.
x=\frac{-415±\sqrt{172225-320\left(-351\right)}}{2\times 80}
Multiply -4 times 80.
x=\frac{-415±\sqrt{172225+112320}}{2\times 80}
Multiply -320 times -351.
x=\frac{-415±\sqrt{284545}}{2\times 80}
Add 172225 to 112320.
x=\frac{-415±\sqrt{284545}}{160}
Multiply 2 times 80.
x=\frac{\sqrt{284545}-415}{160}
Now solve the equation x=\frac{-415±\sqrt{284545}}{160} when ± is plus. Add -415 to \sqrt{284545}.
x=\frac{\sqrt{284545}}{160}-\frac{83}{32}
Divide -415+\sqrt{284545} by 160.
x=\frac{-\sqrt{284545}-415}{160}
Now solve the equation x=\frac{-415±\sqrt{284545}}{160} when ± is minus. Subtract \sqrt{284545} from -415.
x=-\frac{\sqrt{284545}}{160}-\frac{83}{32}
Divide -415-\sqrt{284545} by 160.
x=\frac{\sqrt{284545}}{160}-\frac{83}{32} x=-\frac{\sqrt{284545}}{160}-\frac{83}{32}
The equation is now solved.
80x^{2}+415x-351=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
80x^{2}+415x-351-\left(-351\right)=-\left(-351\right)
Add 351 to both sides of the equation.
80x^{2}+415x=-\left(-351\right)
Subtracting -351 from itself leaves 0.
80x^{2}+415x=351
Subtract -351 from 0.
\frac{80x^{2}+415x}{80}=\frac{351}{80}
Divide both sides by 80.
x^{2}+\frac{415}{80}x=\frac{351}{80}
Dividing by 80 undoes the multiplication by 80.
x^{2}+\frac{83}{16}x=\frac{351}{80}
Reduce the fraction \frac{415}{80} to lowest terms by extracting and canceling out 5.
x^{2}+\frac{83}{16}x+\left(\frac{83}{32}\right)^{2}=\frac{351}{80}+\left(\frac{83}{32}\right)^{2}
Divide \frac{83}{16}, the coefficient of the x term, by 2 to get \frac{83}{32}. Then add the square of \frac{83}{32} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{83}{16}x+\frac{6889}{1024}=\frac{351}{80}+\frac{6889}{1024}
Square \frac{83}{32} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{83}{16}x+\frac{6889}{1024}=\frac{56909}{5120}
Add \frac{351}{80} to \frac{6889}{1024} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{83}{32}\right)^{2}=\frac{56909}{5120}
Factor x^{2}+\frac{83}{16}x+\frac{6889}{1024}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{83}{32}\right)^{2}}=\sqrt{\frac{56909}{5120}}
Take the square root of both sides of the equation.
x+\frac{83}{32}=\frac{\sqrt{284545}}{160} x+\frac{83}{32}=-\frac{\sqrt{284545}}{160}
Simplify.
x=\frac{\sqrt{284545}}{160}-\frac{83}{32} x=-\frac{\sqrt{284545}}{160}-\frac{83}{32}
Subtract \frac{83}{32} from both sides of the equation.