80 \% x \div x \times 100 \% \geq 20 \%
Evaluate (complex solution)
true
Solve for x
x\neq 0
Graph
Share
Copied to clipboard
\frac{\frac{80}{100}x}{x}\times 1\geq \frac{20}{100}
Divide 100 by 100 to get 1.
\frac{\frac{4}{5}x}{x}\times 1\geq \frac{20}{100}
Reduce the fraction \frac{80}{100} to lowest terms by extracting and canceling out 20.
\frac{4}{5}\times 1\geq \frac{20}{100}
Cancel out x in both numerator and denominator.
\frac{4}{5}\geq \frac{20}{100}
Multiply \frac{4}{5} and 1 to get \frac{4}{5}.
\frac{4}{5}\geq \frac{1}{5}
Reduce the fraction \frac{20}{100} to lowest terms by extracting and canceling out 20.
\text{true}
Compare \frac{4}{5} and \frac{1}{5}.
\frac{\frac{4}{5}x}{x}\times \frac{100}{100}\geq \frac{20}{100}
Reduce the fraction \frac{80}{100} to lowest terms by extracting and canceling out 20.
\frac{\frac{4}{5}x}{x}\times 1\geq \frac{20}{100}
Divide 100 by 100 to get 1.
\frac{\frac{4}{5}x}{x}\times 1\geq \frac{1}{5}
Reduce the fraction \frac{20}{100} to lowest terms by extracting and canceling out 20.
\frac{\frac{4}{5}x}{x}\geq \frac{\frac{1}{5}}{1}
Divide both sides by 1. Since 1 is positive, the inequality direction remains the same.
\frac{\frac{4}{5}x}{x}\geq \frac{1}{5\times 1}
Express \frac{\frac{1}{5}}{1} as a single fraction.
\frac{\frac{4}{5}x}{x}\geq \frac{1}{5}
Cancel out 1 in both numerator and denominator.
x\in \mathrm{R}
The value of the expression \frac{4}{5}xx^{-1} is always positive. Inequality holds for x\in \mathrm{R}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}