Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

80=x^{2}-8x
Use the distributive property to multiply x by x-8.
x^{2}-8x=80
Swap sides so that all variable terms are on the left hand side.
x^{2}-8x-80=0
Subtract 80 from both sides.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-80\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -8 for b, and -80 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\left(-80\right)}}{2}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64+320}}{2}
Multiply -4 times -80.
x=\frac{-\left(-8\right)±\sqrt{384}}{2}
Add 64 to 320.
x=\frac{-\left(-8\right)±8\sqrt{6}}{2}
Take the square root of 384.
x=\frac{8±8\sqrt{6}}{2}
The opposite of -8 is 8.
x=\frac{8\sqrt{6}+8}{2}
Now solve the equation x=\frac{8±8\sqrt{6}}{2} when ± is plus. Add 8 to 8\sqrt{6}.
x=4\sqrt{6}+4
Divide 8+8\sqrt{6} by 2.
x=\frac{8-8\sqrt{6}}{2}
Now solve the equation x=\frac{8±8\sqrt{6}}{2} when ± is minus. Subtract 8\sqrt{6} from 8.
x=4-4\sqrt{6}
Divide 8-8\sqrt{6} by 2.
x=4\sqrt{6}+4 x=4-4\sqrt{6}
The equation is now solved.
80=x^{2}-8x
Use the distributive property to multiply x by x-8.
x^{2}-8x=80
Swap sides so that all variable terms are on the left hand side.
x^{2}-8x+\left(-4\right)^{2}=80+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-8x+16=80+16
Square -4.
x^{2}-8x+16=96
Add 80 to 16.
\left(x-4\right)^{2}=96
Factor x^{2}-8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{96}
Take the square root of both sides of the equation.
x-4=4\sqrt{6} x-4=-4\sqrt{6}
Simplify.
x=4\sqrt{6}+4 x=4-4\sqrt{6}
Add 4 to both sides of the equation.