Evaluate
\frac{20447}{2400}\approx 8.519583333
Factor
\frac{7 \cdot 23 \cdot 127}{3 \cdot 2 ^ {5} \cdot 5 ^ {2}} = 8\frac{1247}{2400} = 8.519583333333333
Share
Copied to clipboard
8.52-\frac{15}{36000}
Expand \frac{1.5}{3600} by multiplying both numerator and the denominator by 10.
8.52-\frac{1}{2400}
Reduce the fraction \frac{15}{36000} to lowest terms by extracting and canceling out 15.
\frac{213}{25}-\frac{1}{2400}
Convert decimal number 8.52 to fraction \frac{852}{100}. Reduce the fraction \frac{852}{100} to lowest terms by extracting and canceling out 4.
\frac{20448}{2400}-\frac{1}{2400}
Least common multiple of 25 and 2400 is 2400. Convert \frac{213}{25} and \frac{1}{2400} to fractions with denominator 2400.
\frac{20448-1}{2400}
Since \frac{20448}{2400} and \frac{1}{2400} have the same denominator, subtract them by subtracting their numerators.
\frac{20447}{2400}
Subtract 1 from 20448 to get 20447.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}