Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

96-48x+5x^{2}=0
Multiply both sides of the equation by 12.
5x^{2}-48x+96=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-48\right)±\sqrt{\left(-48\right)^{2}-4\times 5\times 96}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -48 for b, and 96 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-48\right)±\sqrt{2304-4\times 5\times 96}}{2\times 5}
Square -48.
x=\frac{-\left(-48\right)±\sqrt{2304-20\times 96}}{2\times 5}
Multiply -4 times 5.
x=\frac{-\left(-48\right)±\sqrt{2304-1920}}{2\times 5}
Multiply -20 times 96.
x=\frac{-\left(-48\right)±\sqrt{384}}{2\times 5}
Add 2304 to -1920.
x=\frac{-\left(-48\right)±8\sqrt{6}}{2\times 5}
Take the square root of 384.
x=\frac{48±8\sqrt{6}}{2\times 5}
The opposite of -48 is 48.
x=\frac{48±8\sqrt{6}}{10}
Multiply 2 times 5.
x=\frac{8\sqrt{6}+48}{10}
Now solve the equation x=\frac{48±8\sqrt{6}}{10} when ± is plus. Add 48 to 8\sqrt{6}.
x=\frac{4\sqrt{6}+24}{5}
Divide 48+8\sqrt{6} by 10.
x=\frac{48-8\sqrt{6}}{10}
Now solve the equation x=\frac{48±8\sqrt{6}}{10} when ± is minus. Subtract 8\sqrt{6} from 48.
x=\frac{24-4\sqrt{6}}{5}
Divide 48-8\sqrt{6} by 10.
x=\frac{4\sqrt{6}+24}{5} x=\frac{24-4\sqrt{6}}{5}
The equation is now solved.
96-48x+5x^{2}=0
Multiply both sides of the equation by 12.
-48x+5x^{2}=-96
Subtract 96 from both sides. Anything subtracted from zero gives its negation.
5x^{2}-48x=-96
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{5x^{2}-48x}{5}=-\frac{96}{5}
Divide both sides by 5.
x^{2}-\frac{48}{5}x=-\frac{96}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}-\frac{48}{5}x+\left(-\frac{24}{5}\right)^{2}=-\frac{96}{5}+\left(-\frac{24}{5}\right)^{2}
Divide -\frac{48}{5}, the coefficient of the x term, by 2 to get -\frac{24}{5}. Then add the square of -\frac{24}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{48}{5}x+\frac{576}{25}=-\frac{96}{5}+\frac{576}{25}
Square -\frac{24}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{48}{5}x+\frac{576}{25}=\frac{96}{25}
Add -\frac{96}{5} to \frac{576}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{24}{5}\right)^{2}=\frac{96}{25}
Factor x^{2}-\frac{48}{5}x+\frac{576}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{24}{5}\right)^{2}}=\sqrt{\frac{96}{25}}
Take the square root of both sides of the equation.
x-\frac{24}{5}=\frac{4\sqrt{6}}{5} x-\frac{24}{5}=-\frac{4\sqrt{6}}{5}
Simplify.
x=\frac{4\sqrt{6}+24}{5} x=\frac{24-4\sqrt{6}}{5}
Add \frac{24}{5} to both sides of the equation.