Solve for a
a = \frac{3 \sqrt{21} + 15}{8} \approx 3.593465886
a=\frac{15-3\sqrt{21}}{8}\approx 0.156534114
Quiz
Quadratic Equation
5 problems similar to:
8-2a- \frac{ 32+8 { a }^{ 2 } -40a }{ 5 } = \frac{ 5 }{ 2 }
Share
Copied to clipboard
80-20a-2\left(32+8a^{2}-40a\right)=25
Multiply both sides of the equation by 10, the least common multiple of 5,2.
80-20a-64-16a^{2}+80a=25
Use the distributive property to multiply -2 by 32+8a^{2}-40a.
16-20a-16a^{2}+80a=25
Subtract 64 from 80 to get 16.
16+60a-16a^{2}=25
Combine -20a and 80a to get 60a.
16+60a-16a^{2}-25=0
Subtract 25 from both sides.
-9+60a-16a^{2}=0
Subtract 25 from 16 to get -9.
-16a^{2}+60a-9=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-60±\sqrt{60^{2}-4\left(-16\right)\left(-9\right)}}{2\left(-16\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -16 for a, 60 for b, and -9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-60±\sqrt{3600-4\left(-16\right)\left(-9\right)}}{2\left(-16\right)}
Square 60.
a=\frac{-60±\sqrt{3600+64\left(-9\right)}}{2\left(-16\right)}
Multiply -4 times -16.
a=\frac{-60±\sqrt{3600-576}}{2\left(-16\right)}
Multiply 64 times -9.
a=\frac{-60±\sqrt{3024}}{2\left(-16\right)}
Add 3600 to -576.
a=\frac{-60±12\sqrt{21}}{2\left(-16\right)}
Take the square root of 3024.
a=\frac{-60±12\sqrt{21}}{-32}
Multiply 2 times -16.
a=\frac{12\sqrt{21}-60}{-32}
Now solve the equation a=\frac{-60±12\sqrt{21}}{-32} when ± is plus. Add -60 to 12\sqrt{21}.
a=\frac{15-3\sqrt{21}}{8}
Divide -60+12\sqrt{21} by -32.
a=\frac{-12\sqrt{21}-60}{-32}
Now solve the equation a=\frac{-60±12\sqrt{21}}{-32} when ± is minus. Subtract 12\sqrt{21} from -60.
a=\frac{3\sqrt{21}+15}{8}
Divide -60-12\sqrt{21} by -32.
a=\frac{15-3\sqrt{21}}{8} a=\frac{3\sqrt{21}+15}{8}
The equation is now solved.
80-20a-2\left(32+8a^{2}-40a\right)=25
Multiply both sides of the equation by 10, the least common multiple of 5,2.
80-20a-64-16a^{2}+80a=25
Use the distributive property to multiply -2 by 32+8a^{2}-40a.
16-20a-16a^{2}+80a=25
Subtract 64 from 80 to get 16.
16+60a-16a^{2}=25
Combine -20a and 80a to get 60a.
60a-16a^{2}=25-16
Subtract 16 from both sides.
60a-16a^{2}=9
Subtract 16 from 25 to get 9.
-16a^{2}+60a=9
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-16a^{2}+60a}{-16}=\frac{9}{-16}
Divide both sides by -16.
a^{2}+\frac{60}{-16}a=\frac{9}{-16}
Dividing by -16 undoes the multiplication by -16.
a^{2}-\frac{15}{4}a=\frac{9}{-16}
Reduce the fraction \frac{60}{-16} to lowest terms by extracting and canceling out 4.
a^{2}-\frac{15}{4}a=-\frac{9}{16}
Divide 9 by -16.
a^{2}-\frac{15}{4}a+\left(-\frac{15}{8}\right)^{2}=-\frac{9}{16}+\left(-\frac{15}{8}\right)^{2}
Divide -\frac{15}{4}, the coefficient of the x term, by 2 to get -\frac{15}{8}. Then add the square of -\frac{15}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-\frac{15}{4}a+\frac{225}{64}=-\frac{9}{16}+\frac{225}{64}
Square -\frac{15}{8} by squaring both the numerator and the denominator of the fraction.
a^{2}-\frac{15}{4}a+\frac{225}{64}=\frac{189}{64}
Add -\frac{9}{16} to \frac{225}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(a-\frac{15}{8}\right)^{2}=\frac{189}{64}
Factor a^{2}-\frac{15}{4}a+\frac{225}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{15}{8}\right)^{2}}=\sqrt{\frac{189}{64}}
Take the square root of both sides of the equation.
a-\frac{15}{8}=\frac{3\sqrt{21}}{8} a-\frac{15}{8}=-\frac{3\sqrt{21}}{8}
Simplify.
a=\frac{3\sqrt{21}+15}{8} a=\frac{15-3\sqrt{21}}{8}
Add \frac{15}{8} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}