Verify
false
Share
Copied to clipboard
\frac{776}{97}+\frac{67}{97}=50+\frac{8}{32}-44
Convert 8 to fraction \frac{776}{97}.
\frac{776+67}{97}=50+\frac{8}{32}-44
Since \frac{776}{97} and \frac{67}{97} have the same denominator, add them by adding their numerators.
\frac{843}{97}=50+\frac{8}{32}-44
Add 776 and 67 to get 843.
\frac{843}{97}=50+\frac{1}{4}-44
Reduce the fraction \frac{8}{32} to lowest terms by extracting and canceling out 8.
\frac{843}{97}=\frac{200}{4}+\frac{1}{4}-44
Convert 50 to fraction \frac{200}{4}.
\frac{843}{97}=\frac{200+1}{4}-44
Since \frac{200}{4} and \frac{1}{4} have the same denominator, add them by adding their numerators.
\frac{843}{97}=\frac{201}{4}-44
Add 200 and 1 to get 201.
\frac{843}{97}=\frac{201}{4}-\frac{176}{4}
Convert 44 to fraction \frac{176}{4}.
\frac{843}{97}=\frac{201-176}{4}
Since \frac{201}{4} and \frac{176}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{843}{97}=\frac{25}{4}
Subtract 176 from 201 to get 25.
\frac{3372}{388}=\frac{2425}{388}
Least common multiple of 97 and 4 is 388. Convert \frac{843}{97} and \frac{25}{4} to fractions with denominator 388.
\text{false}
Compare \frac{3372}{388} and \frac{2425}{388}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}