Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

4\left(2y^{2}-5y\right)
Factor out 4.
y\left(2y-5\right)
Consider 2y^{2}-5y. Factor out y.
4y\left(2y-5\right)
Rewrite the complete factored expression.
8y^{2}-20y=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}}}{2\times 8}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-20\right)±20}{2\times 8}
Take the square root of \left(-20\right)^{2}.
y=\frac{20±20}{2\times 8}
The opposite of -20 is 20.
y=\frac{20±20}{16}
Multiply 2 times 8.
y=\frac{40}{16}
Now solve the equation y=\frac{20±20}{16} when ± is plus. Add 20 to 20.
y=\frac{5}{2}
Reduce the fraction \frac{40}{16} to lowest terms by extracting and canceling out 8.
y=\frac{0}{16}
Now solve the equation y=\frac{20±20}{16} when ± is minus. Subtract 20 from 20.
y=0
Divide 0 by 16.
8y^{2}-20y=8\left(y-\frac{5}{2}\right)y
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{5}{2} for x_{1} and 0 for x_{2}.
8y^{2}-20y=8\times \frac{2y-5}{2}y
Subtract \frac{5}{2} from y by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
8y^{2}-20y=4\left(2y-5\right)y
Cancel out 2, the greatest common factor in 8 and 2.