Solve for y
y=\frac{2}{3z+4}
z\neq -\frac{4}{3}
Solve for z
z=-\frac{4}{3}+\frac{2}{3y}
y\neq 0
Share
Copied to clipboard
8y=-6yz+4
Multiply -2 and 3 to get -6.
8y+6yz=4
Add 6yz to both sides.
\left(8+6z\right)y=4
Combine all terms containing y.
\left(6z+8\right)y=4
The equation is in standard form.
\frac{\left(6z+8\right)y}{6z+8}=\frac{4}{6z+8}
Divide both sides by 6z+8.
y=\frac{4}{6z+8}
Dividing by 6z+8 undoes the multiplication by 6z+8.
y=\frac{2}{3z+4}
Divide 4 by 6z+8.
8y=-6yz+4
Multiply -2 and 3 to get -6.
-6yz+4=8y
Swap sides so that all variable terms are on the left hand side.
-6yz=8y-4
Subtract 4 from both sides.
\left(-6y\right)z=8y-4
The equation is in standard form.
\frac{\left(-6y\right)z}{-6y}=\frac{8y-4}{-6y}
Divide both sides by -6y.
z=\frac{8y-4}{-6y}
Dividing by -6y undoes the multiplication by -6y.
z=-\frac{4}{3}+\frac{2}{3y}
Divide 8y-4 by -6y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}