Solve for x
x=-0.125+\frac{135}{16y}
y\neq 0
Solve for y
y=\frac{135}{2\left(8x+1\right)}
x\neq -\frac{1}{8}
Graph
Share
Copied to clipboard
8xy=67.5-y
Subtract y from both sides.
8yx=67.5-y
The equation is in standard form.
\frac{8yx}{8y}=\frac{67.5-y}{8y}
Divide both sides by 8y.
x=\frac{67.5-y}{8y}
Dividing by 8y undoes the multiplication by 8y.
x=-\frac{1}{8}+\frac{135}{16y}
Divide 67.5-y by 8y.
\left(8x+1\right)y=67.5
Combine all terms containing y.
\left(8x+1\right)y=\frac{135}{2}
The equation is in standard form.
\frac{\left(8x+1\right)y}{8x+1}=\frac{\frac{135}{2}}{8x+1}
Divide both sides by 8x+1.
y=\frac{\frac{135}{2}}{8x+1}
Dividing by 8x+1 undoes the multiplication by 8x+1.
y=\frac{135}{2\left(8x+1\right)}
Divide \frac{135}{2} by 8x+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}