Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-x^{2}+8x=9
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-x^{2}+8x-9=9-9
Subtract 9 from both sides of the equation.
-x^{2}+8x-9=0
Subtracting 9 from itself leaves 0.
x=\frac{-8±\sqrt{8^{2}-4\left(-1\right)\left(-9\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 8 for b, and -9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\left(-1\right)\left(-9\right)}}{2\left(-1\right)}
Square 8.
x=\frac{-8±\sqrt{64+4\left(-9\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-8±\sqrt{64-36}}{2\left(-1\right)}
Multiply 4 times -9.
x=\frac{-8±\sqrt{28}}{2\left(-1\right)}
Add 64 to -36.
x=\frac{-8±2\sqrt{7}}{2\left(-1\right)}
Take the square root of 28.
x=\frac{-8±2\sqrt{7}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{7}-8}{-2}
Now solve the equation x=\frac{-8±2\sqrt{7}}{-2} when ± is plus. Add -8 to 2\sqrt{7}.
x=4-\sqrt{7}
Divide -8+2\sqrt{7} by -2.
x=\frac{-2\sqrt{7}-8}{-2}
Now solve the equation x=\frac{-8±2\sqrt{7}}{-2} when ± is minus. Subtract 2\sqrt{7} from -8.
x=\sqrt{7}+4
Divide -8-2\sqrt{7} by -2.
x=4-\sqrt{7} x=\sqrt{7}+4
The equation is now solved.
-x^{2}+8x=9
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+8x}{-1}=\frac{9}{-1}
Divide both sides by -1.
x^{2}+\frac{8}{-1}x=\frac{9}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-8x=\frac{9}{-1}
Divide 8 by -1.
x^{2}-8x=-9
Divide 9 by -1.
x^{2}-8x+\left(-4\right)^{2}=-9+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-8x+16=-9+16
Square -4.
x^{2}-8x+16=7
Add -9 to 16.
\left(x-4\right)^{2}=7
Factor x^{2}-8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{7}
Take the square root of both sides of the equation.
x-4=\sqrt{7} x-4=-\sqrt{7}
Simplify.
x=\sqrt{7}+4 x=4-\sqrt{7}
Add 4 to both sides of the equation.