Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

10x^{2}+8x-48=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-8±\sqrt{8^{2}-4\times 10\left(-48\right)}}{2\times 10}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-8±\sqrt{64-4\times 10\left(-48\right)}}{2\times 10}
Square 8.
x=\frac{-8±\sqrt{64-40\left(-48\right)}}{2\times 10}
Multiply -4 times 10.
x=\frac{-8±\sqrt{64+1920}}{2\times 10}
Multiply -40 times -48.
x=\frac{-8±\sqrt{1984}}{2\times 10}
Add 64 to 1920.
x=\frac{-8±8\sqrt{31}}{2\times 10}
Take the square root of 1984.
x=\frac{-8±8\sqrt{31}}{20}
Multiply 2 times 10.
x=\frac{8\sqrt{31}-8}{20}
Now solve the equation x=\frac{-8±8\sqrt{31}}{20} when ± is plus. Add -8 to 8\sqrt{31}.
x=\frac{2\sqrt{31}-2}{5}
Divide -8+8\sqrt{31} by 20.
x=\frac{-8\sqrt{31}-8}{20}
Now solve the equation x=\frac{-8±8\sqrt{31}}{20} when ± is minus. Subtract 8\sqrt{31} from -8.
x=\frac{-2\sqrt{31}-2}{5}
Divide -8-8\sqrt{31} by 20.
10x^{2}+8x-48=10\left(x-\frac{2\sqrt{31}-2}{5}\right)\left(x-\frac{-2\sqrt{31}-2}{5}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-2+2\sqrt{31}}{5} for x_{1} and \frac{-2-2\sqrt{31}}{5} for x_{2}.