Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

24x^{2}+40x=0
Use the distributive property to multiply 8x by 3x+5.
x\left(24x+40\right)=0
Factor out x.
x=0 x=-\frac{5}{3}
To find equation solutions, solve x=0 and 24x+40=0.
24x^{2}+40x=0
Use the distributive property to multiply 8x by 3x+5.
x=\frac{-40±\sqrt{40^{2}}}{2\times 24}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 24 for a, 40 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-40±40}{2\times 24}
Take the square root of 40^{2}.
x=\frac{-40±40}{48}
Multiply 2 times 24.
x=\frac{0}{48}
Now solve the equation x=\frac{-40±40}{48} when ± is plus. Add -40 to 40.
x=0
Divide 0 by 48.
x=-\frac{80}{48}
Now solve the equation x=\frac{-40±40}{48} when ± is minus. Subtract 40 from -40.
x=-\frac{5}{3}
Reduce the fraction \frac{-80}{48} to lowest terms by extracting and canceling out 16.
x=0 x=-\frac{5}{3}
The equation is now solved.
24x^{2}+40x=0
Use the distributive property to multiply 8x by 3x+5.
\frac{24x^{2}+40x}{24}=\frac{0}{24}
Divide both sides by 24.
x^{2}+\frac{40}{24}x=\frac{0}{24}
Dividing by 24 undoes the multiplication by 24.
x^{2}+\frac{5}{3}x=\frac{0}{24}
Reduce the fraction \frac{40}{24} to lowest terms by extracting and canceling out 8.
x^{2}+\frac{5}{3}x=0
Divide 0 by 24.
x^{2}+\frac{5}{3}x+\left(\frac{5}{6}\right)^{2}=\left(\frac{5}{6}\right)^{2}
Divide \frac{5}{3}, the coefficient of the x term, by 2 to get \frac{5}{6}. Then add the square of \frac{5}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{5}{3}x+\frac{25}{36}=\frac{25}{36}
Square \frac{5}{6} by squaring both the numerator and the denominator of the fraction.
\left(x+\frac{5}{6}\right)^{2}=\frac{25}{36}
Factor x^{2}+\frac{5}{3}x+\frac{25}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{6}\right)^{2}}=\sqrt{\frac{25}{36}}
Take the square root of both sides of the equation.
x+\frac{5}{6}=\frac{5}{6} x+\frac{5}{6}=-\frac{5}{6}
Simplify.
x=0 x=-\frac{5}{3}
Subtract \frac{5}{6} from both sides of the equation.