Evaluate
\frac{199x+12}{5}
Expand
\frac{199x+12}{5}
Graph
Share
Copied to clipboard
40x+2-\frac{3+x}{5}+1
Multiply 8 and 5 to get 40.
40x+3-\frac{3+x}{5}
Add 2 and 1 to get 3.
\frac{5\left(40x+3\right)}{5}-\frac{3+x}{5}
To add or subtract expressions, expand them to make their denominators the same. Multiply 40x+3 times \frac{5}{5}.
\frac{5\left(40x+3\right)-\left(3+x\right)}{5}
Since \frac{5\left(40x+3\right)}{5} and \frac{3+x}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{200x+15-3-x}{5}
Do the multiplications in 5\left(40x+3\right)-\left(3+x\right).
\frac{199x+12}{5}
Combine like terms in 200x+15-3-x.
40x+2-\frac{3+x}{5}+1
Multiply 8 and 5 to get 40.
40x+3-\frac{3+x}{5}
Add 2 and 1 to get 3.
\frac{5\left(40x+3\right)}{5}-\frac{3+x}{5}
To add or subtract expressions, expand them to make their denominators the same. Multiply 40x+3 times \frac{5}{5}.
\frac{5\left(40x+3\right)-\left(3+x\right)}{5}
Since \frac{5\left(40x+3\right)}{5} and \frac{3+x}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{200x+15-3-x}{5}
Do the multiplications in 5\left(40x+3\right)-\left(3+x\right).
\frac{199x+12}{5}
Combine like terms in 200x+15-3-x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}