Solve for x (complex solution)
x=\frac{-1+\sqrt{55}i}{8}\approx -0.125+0.927024811i
x=\frac{-\sqrt{55}i-1}{8}\approx -0.125-0.927024811i
Graph
Share
Copied to clipboard
8x^{2}-\left(-7\right)=-2x
Subtract -7 from both sides.
8x^{2}+7=-2x
The opposite of -7 is 7.
8x^{2}+7+2x=0
Add 2x to both sides.
8x^{2}+2x+7=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2±\sqrt{2^{2}-4\times 8\times 7}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, 2 for b, and 7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 8\times 7}}{2\times 8}
Square 2.
x=\frac{-2±\sqrt{4-32\times 7}}{2\times 8}
Multiply -4 times 8.
x=\frac{-2±\sqrt{4-224}}{2\times 8}
Multiply -32 times 7.
x=\frac{-2±\sqrt{-220}}{2\times 8}
Add 4 to -224.
x=\frac{-2±2\sqrt{55}i}{2\times 8}
Take the square root of -220.
x=\frac{-2±2\sqrt{55}i}{16}
Multiply 2 times 8.
x=\frac{-2+2\sqrt{55}i}{16}
Now solve the equation x=\frac{-2±2\sqrt{55}i}{16} when ± is plus. Add -2 to 2i\sqrt{55}.
x=\frac{-1+\sqrt{55}i}{8}
Divide -2+2i\sqrt{55} by 16.
x=\frac{-2\sqrt{55}i-2}{16}
Now solve the equation x=\frac{-2±2\sqrt{55}i}{16} when ± is minus. Subtract 2i\sqrt{55} from -2.
x=\frac{-\sqrt{55}i-1}{8}
Divide -2-2i\sqrt{55} by 16.
x=\frac{-1+\sqrt{55}i}{8} x=\frac{-\sqrt{55}i-1}{8}
The equation is now solved.
8x^{2}+2x=-7
Add 2x to both sides.
\frac{8x^{2}+2x}{8}=-\frac{7}{8}
Divide both sides by 8.
x^{2}+\frac{2}{8}x=-\frac{7}{8}
Dividing by 8 undoes the multiplication by 8.
x^{2}+\frac{1}{4}x=-\frac{7}{8}
Reduce the fraction \frac{2}{8} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{1}{4}x+\left(\frac{1}{8}\right)^{2}=-\frac{7}{8}+\left(\frac{1}{8}\right)^{2}
Divide \frac{1}{4}, the coefficient of the x term, by 2 to get \frac{1}{8}. Then add the square of \frac{1}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{4}x+\frac{1}{64}=-\frac{7}{8}+\frac{1}{64}
Square \frac{1}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{4}x+\frac{1}{64}=-\frac{55}{64}
Add -\frac{7}{8} to \frac{1}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{8}\right)^{2}=-\frac{55}{64}
Factor x^{2}+\frac{1}{4}x+\frac{1}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{8}\right)^{2}}=\sqrt{-\frac{55}{64}}
Take the square root of both sides of the equation.
x+\frac{1}{8}=\frac{\sqrt{55}i}{8} x+\frac{1}{8}=-\frac{\sqrt{55}i}{8}
Simplify.
x=\frac{-1+\sqrt{55}i}{8} x=\frac{-\sqrt{55}i-1}{8}
Subtract \frac{1}{8} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}