Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

factor(8x^{2}+9x+2)
Combine 7x and 2x to get 9x.
8x^{2}+9x+2=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-9±\sqrt{9^{2}-4\times 8\times 2}}{2\times 8}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-9±\sqrt{81-4\times 8\times 2}}{2\times 8}
Square 9.
x=\frac{-9±\sqrt{81-32\times 2}}{2\times 8}
Multiply -4 times 8.
x=\frac{-9±\sqrt{81-64}}{2\times 8}
Multiply -32 times 2.
x=\frac{-9±\sqrt{17}}{2\times 8}
Add 81 to -64.
x=\frac{-9±\sqrt{17}}{16}
Multiply 2 times 8.
x=\frac{\sqrt{17}-9}{16}
Now solve the equation x=\frac{-9±\sqrt{17}}{16} when ± is plus. Add -9 to \sqrt{17}.
x=\frac{-\sqrt{17}-9}{16}
Now solve the equation x=\frac{-9±\sqrt{17}}{16} when ± is minus. Subtract \sqrt{17} from -9.
8x^{2}+9x+2=8\left(x-\frac{\sqrt{17}-9}{16}\right)\left(x-\frac{-\sqrt{17}-9}{16}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-9+\sqrt{17}}{16} for x_{1} and \frac{-9-\sqrt{17}}{16} for x_{2}.
8x^{2}+9x+2
Combine 7x and 2x to get 9x.