Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

8x+66x-6x^{2}=100
Use the distributive property to multiply 6x by 11-x.
74x-6x^{2}=100
Combine 8x and 66x to get 74x.
74x-6x^{2}-100=0
Subtract 100 from both sides.
-6x^{2}+74x-100=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-74±\sqrt{74^{2}-4\left(-6\right)\left(-100\right)}}{2\left(-6\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -6 for a, 74 for b, and -100 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-74±\sqrt{5476-4\left(-6\right)\left(-100\right)}}{2\left(-6\right)}
Square 74.
x=\frac{-74±\sqrt{5476+24\left(-100\right)}}{2\left(-6\right)}
Multiply -4 times -6.
x=\frac{-74±\sqrt{5476-2400}}{2\left(-6\right)}
Multiply 24 times -100.
x=\frac{-74±\sqrt{3076}}{2\left(-6\right)}
Add 5476 to -2400.
x=\frac{-74±2\sqrt{769}}{2\left(-6\right)}
Take the square root of 3076.
x=\frac{-74±2\sqrt{769}}{-12}
Multiply 2 times -6.
x=\frac{2\sqrt{769}-74}{-12}
Now solve the equation x=\frac{-74±2\sqrt{769}}{-12} when ± is plus. Add -74 to 2\sqrt{769}.
x=\frac{37-\sqrt{769}}{6}
Divide -74+2\sqrt{769} by -12.
x=\frac{-2\sqrt{769}-74}{-12}
Now solve the equation x=\frac{-74±2\sqrt{769}}{-12} when ± is minus. Subtract 2\sqrt{769} from -74.
x=\frac{\sqrt{769}+37}{6}
Divide -74-2\sqrt{769} by -12.
x=\frac{37-\sqrt{769}}{6} x=\frac{\sqrt{769}+37}{6}
The equation is now solved.
8x+66x-6x^{2}=100
Use the distributive property to multiply 6x by 11-x.
74x-6x^{2}=100
Combine 8x and 66x to get 74x.
-6x^{2}+74x=100
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-6x^{2}+74x}{-6}=\frac{100}{-6}
Divide both sides by -6.
x^{2}+\frac{74}{-6}x=\frac{100}{-6}
Dividing by -6 undoes the multiplication by -6.
x^{2}-\frac{37}{3}x=\frac{100}{-6}
Reduce the fraction \frac{74}{-6} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{37}{3}x=-\frac{50}{3}
Reduce the fraction \frac{100}{-6} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{37}{3}x+\left(-\frac{37}{6}\right)^{2}=-\frac{50}{3}+\left(-\frac{37}{6}\right)^{2}
Divide -\frac{37}{3}, the coefficient of the x term, by 2 to get -\frac{37}{6}. Then add the square of -\frac{37}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{37}{3}x+\frac{1369}{36}=-\frac{50}{3}+\frac{1369}{36}
Square -\frac{37}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{37}{3}x+\frac{1369}{36}=\frac{769}{36}
Add -\frac{50}{3} to \frac{1369}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{37}{6}\right)^{2}=\frac{769}{36}
Factor x^{2}-\frac{37}{3}x+\frac{1369}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{37}{6}\right)^{2}}=\sqrt{\frac{769}{36}}
Take the square root of both sides of the equation.
x-\frac{37}{6}=\frac{\sqrt{769}}{6} x-\frac{37}{6}=-\frac{\sqrt{769}}{6}
Simplify.
x=\frac{\sqrt{769}+37}{6} x=\frac{37-\sqrt{769}}{6}
Add \frac{37}{6} to both sides of the equation.