Skip to main content
Solve for t (complex solution)
Tick mark Image
Solve for t
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

8t\left(x^{2}+4x+4\right)-3\left(x+2\right)=0\times 4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
8tx^{2}+32tx+32t-3\left(x+2\right)=0\times 4
Use the distributive property to multiply 8t by x^{2}+4x+4.
8tx^{2}+32tx+32t-3x-6=0\times 4
Use the distributive property to multiply -3 by x+2.
8tx^{2}+32tx+32t-3x-6=0
Multiply 0 and 4 to get 0.
8tx^{2}+32tx+32t-6=3x
Add 3x to both sides. Anything plus zero gives itself.
8tx^{2}+32tx+32t=3x+6
Add 6 to both sides.
\left(8x^{2}+32x+32\right)t=3x+6
Combine all terms containing t.
\frac{\left(8x^{2}+32x+32\right)t}{8x^{2}+32x+32}=\frac{3x+6}{8x^{2}+32x+32}
Divide both sides by 8x^{2}+32x+32.
t=\frac{3x+6}{8x^{2}+32x+32}
Dividing by 8x^{2}+32x+32 undoes the multiplication by 8x^{2}+32x+32.
t=\frac{3}{8\left(x+2\right)}
Divide 6+3x by 8x^{2}+32x+32.
8t\left(x^{2}+4x+4\right)-3\left(x+2\right)=0\times 4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
8tx^{2}+32tx+32t-3\left(x+2\right)=0\times 4
Use the distributive property to multiply 8t by x^{2}+4x+4.
8tx^{2}+32tx+32t-3x-6=0\times 4
Use the distributive property to multiply -3 by x+2.
8tx^{2}+32tx+32t-3x-6=0
Multiply 0 and 4 to get 0.
8tx^{2}+32tx+32t-6=3x
Add 3x to both sides. Anything plus zero gives itself.
8tx^{2}+32tx+32t=3x+6
Add 6 to both sides.
\left(8x^{2}+32x+32\right)t=3x+6
Combine all terms containing t.
\frac{\left(8x^{2}+32x+32\right)t}{8x^{2}+32x+32}=\frac{3x+6}{8x^{2}+32x+32}
Divide both sides by 8x^{2}+32x+32.
t=\frac{3x+6}{8x^{2}+32x+32}
Dividing by 8x^{2}+32x+32 undoes the multiplication by 8x^{2}+32x+32.
t=\frac{3}{8\left(x+2\right)}
Divide 6+3x by 8x^{2}+32x+32.