Skip to main content
Solve for s
Tick mark Image

Similar Problems from Web Search

Share

8s^{2}=3
Add 3 to both sides. Anything plus zero gives itself.
s^{2}=\frac{3}{8}
Divide both sides by 8.
s=\frac{\sqrt{6}}{4} s=-\frac{\sqrt{6}}{4}
Take the square root of both sides of the equation.
8s^{2}-3=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
s=\frac{0±\sqrt{0^{2}-4\times 8\left(-3\right)}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, 0 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
s=\frac{0±\sqrt{-4\times 8\left(-3\right)}}{2\times 8}
Square 0.
s=\frac{0±\sqrt{-32\left(-3\right)}}{2\times 8}
Multiply -4 times 8.
s=\frac{0±\sqrt{96}}{2\times 8}
Multiply -32 times -3.
s=\frac{0±4\sqrt{6}}{2\times 8}
Take the square root of 96.
s=\frac{0±4\sqrt{6}}{16}
Multiply 2 times 8.
s=\frac{\sqrt{6}}{4}
Now solve the equation s=\frac{0±4\sqrt{6}}{16} when ± is plus.
s=-\frac{\sqrt{6}}{4}
Now solve the equation s=\frac{0±4\sqrt{6}}{16} when ± is minus.
s=\frac{\sqrt{6}}{4} s=-\frac{\sqrt{6}}{4}
The equation is now solved.