Skip to main content
Solve for s
Tick mark Image

Similar Problems from Web Search

Share

8s^{2}-13s=-\frac{3}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
8s^{2}-13s-\left(-\frac{3}{2}\right)=-\frac{3}{2}-\left(-\frac{3}{2}\right)
Add \frac{3}{2} to both sides of the equation.
8s^{2}-13s-\left(-\frac{3}{2}\right)=0
Subtracting -\frac{3}{2} from itself leaves 0.
8s^{2}-13s+\frac{3}{2}=0
Subtract -\frac{3}{2} from 0.
s=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 8\times \frac{3}{2}}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, -13 for b, and \frac{3}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
s=\frac{-\left(-13\right)±\sqrt{169-4\times 8\times \frac{3}{2}}}{2\times 8}
Square -13.
s=\frac{-\left(-13\right)±\sqrt{169-32\times \frac{3}{2}}}{2\times 8}
Multiply -4 times 8.
s=\frac{-\left(-13\right)±\sqrt{169-48}}{2\times 8}
Multiply -32 times \frac{3}{2}.
s=\frac{-\left(-13\right)±\sqrt{121}}{2\times 8}
Add 169 to -48.
s=\frac{-\left(-13\right)±11}{2\times 8}
Take the square root of 121.
s=\frac{13±11}{2\times 8}
The opposite of -13 is 13.
s=\frac{13±11}{16}
Multiply 2 times 8.
s=\frac{24}{16}
Now solve the equation s=\frac{13±11}{16} when ± is plus. Add 13 to 11.
s=\frac{3}{2}
Reduce the fraction \frac{24}{16} to lowest terms by extracting and canceling out 8.
s=\frac{2}{16}
Now solve the equation s=\frac{13±11}{16} when ± is minus. Subtract 11 from 13.
s=\frac{1}{8}
Reduce the fraction \frac{2}{16} to lowest terms by extracting and canceling out 2.
s=\frac{3}{2} s=\frac{1}{8}
The equation is now solved.
8s^{2}-13s=-\frac{3}{2}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{8s^{2}-13s}{8}=-\frac{\frac{3}{2}}{8}
Divide both sides by 8.
s^{2}-\frac{13}{8}s=-\frac{\frac{3}{2}}{8}
Dividing by 8 undoes the multiplication by 8.
s^{2}-\frac{13}{8}s=-\frac{3}{16}
Divide -\frac{3}{2} by 8.
s^{2}-\frac{13}{8}s+\left(-\frac{13}{16}\right)^{2}=-\frac{3}{16}+\left(-\frac{13}{16}\right)^{2}
Divide -\frac{13}{8}, the coefficient of the x term, by 2 to get -\frac{13}{16}. Then add the square of -\frac{13}{16} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
s^{2}-\frac{13}{8}s+\frac{169}{256}=-\frac{3}{16}+\frac{169}{256}
Square -\frac{13}{16} by squaring both the numerator and the denominator of the fraction.
s^{2}-\frac{13}{8}s+\frac{169}{256}=\frac{121}{256}
Add -\frac{3}{16} to \frac{169}{256} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(s-\frac{13}{16}\right)^{2}=\frac{121}{256}
Factor s^{2}-\frac{13}{8}s+\frac{169}{256}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(s-\frac{13}{16}\right)^{2}}=\sqrt{\frac{121}{256}}
Take the square root of both sides of the equation.
s-\frac{13}{16}=\frac{11}{16} s-\frac{13}{16}=-\frac{11}{16}
Simplify.
s=\frac{3}{2} s=\frac{1}{8}
Add \frac{13}{16} to both sides of the equation.