Solve for s
s=-\frac{7t}{8}-\frac{9}{4}
Solve for t
t=\frac{-8s-18}{7}
Share
Copied to clipboard
8s=-18-7t
Subtract 7t from both sides.
8s=-7t-18
The equation is in standard form.
\frac{8s}{8}=\frac{-7t-18}{8}
Divide both sides by 8.
s=\frac{-7t-18}{8}
Dividing by 8 undoes the multiplication by 8.
s=-\frac{7t}{8}-\frac{9}{4}
Divide -18-7t by 8.
7t=-18-8s
Subtract 8s from both sides.
7t=-8s-18
The equation is in standard form.
\frac{7t}{7}=\frac{-8s-18}{7}
Divide both sides by 7.
t=\frac{-8s-18}{7}
Dividing by 7 undoes the multiplication by 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}