Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

8\left(r^{2}+7r\right)
Factor out 8.
r\left(r+7\right)
Consider r^{2}+7r. Factor out r.
8r\left(r+7\right)
Rewrite the complete factored expression.
8r^{2}+56r=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
r=\frac{-56±\sqrt{56^{2}}}{2\times 8}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
r=\frac{-56±56}{2\times 8}
Take the square root of 56^{2}.
r=\frac{-56±56}{16}
Multiply 2 times 8.
r=\frac{0}{16}
Now solve the equation r=\frac{-56±56}{16} when ± is plus. Add -56 to 56.
r=0
Divide 0 by 16.
r=-\frac{112}{16}
Now solve the equation r=\frac{-56±56}{16} when ± is minus. Subtract 56 from -56.
r=-7
Divide -112 by 16.
8r^{2}+56r=8r\left(r-\left(-7\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and -7 for x_{2}.
8r^{2}+56r=8r\left(r+7\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.