Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

11p^{2}+8p-13=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
p=\frac{-8±\sqrt{8^{2}-4\times 11\left(-13\right)}}{2\times 11}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
p=\frac{-8±\sqrt{64-4\times 11\left(-13\right)}}{2\times 11}
Square 8.
p=\frac{-8±\sqrt{64-44\left(-13\right)}}{2\times 11}
Multiply -4 times 11.
p=\frac{-8±\sqrt{64+572}}{2\times 11}
Multiply -44 times -13.
p=\frac{-8±\sqrt{636}}{2\times 11}
Add 64 to 572.
p=\frac{-8±2\sqrt{159}}{2\times 11}
Take the square root of 636.
p=\frac{-8±2\sqrt{159}}{22}
Multiply 2 times 11.
p=\frac{2\sqrt{159}-8}{22}
Now solve the equation p=\frac{-8±2\sqrt{159}}{22} when ± is plus. Add -8 to 2\sqrt{159}.
p=\frac{\sqrt{159}-4}{11}
Divide -8+2\sqrt{159} by 22.
p=\frac{-2\sqrt{159}-8}{22}
Now solve the equation p=\frac{-8±2\sqrt{159}}{22} when ± is minus. Subtract 2\sqrt{159} from -8.
p=\frac{-\sqrt{159}-4}{11}
Divide -8-2\sqrt{159} by 22.
11p^{2}+8p-13=11\left(p-\frac{\sqrt{159}-4}{11}\right)\left(p-\frac{-\sqrt{159}-4}{11}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-4+\sqrt{159}}{11} for x_{1} and \frac{-4-\sqrt{159}}{11} for x_{2}.