Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

8n^{2}+12n-5=12
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
8n^{2}+12n-5-12=12-12
Subtract 12 from both sides of the equation.
8n^{2}+12n-5-12=0
Subtracting 12 from itself leaves 0.
8n^{2}+12n-17=0
Subtract 12 from -5.
n=\frac{-12±\sqrt{12^{2}-4\times 8\left(-17\right)}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, 12 for b, and -17 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-12±\sqrt{144-4\times 8\left(-17\right)}}{2\times 8}
Square 12.
n=\frac{-12±\sqrt{144-32\left(-17\right)}}{2\times 8}
Multiply -4 times 8.
n=\frac{-12±\sqrt{144+544}}{2\times 8}
Multiply -32 times -17.
n=\frac{-12±\sqrt{688}}{2\times 8}
Add 144 to 544.
n=\frac{-12±4\sqrt{43}}{2\times 8}
Take the square root of 688.
n=\frac{-12±4\sqrt{43}}{16}
Multiply 2 times 8.
n=\frac{4\sqrt{43}-12}{16}
Now solve the equation n=\frac{-12±4\sqrt{43}}{16} when ± is plus. Add -12 to 4\sqrt{43}.
n=\frac{\sqrt{43}-3}{4}
Divide -12+4\sqrt{43} by 16.
n=\frac{-4\sqrt{43}-12}{16}
Now solve the equation n=\frac{-12±4\sqrt{43}}{16} when ± is minus. Subtract 4\sqrt{43} from -12.
n=\frac{-\sqrt{43}-3}{4}
Divide -12-4\sqrt{43} by 16.
n=\frac{\sqrt{43}-3}{4} n=\frac{-\sqrt{43}-3}{4}
The equation is now solved.
8n^{2}+12n-5=12
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
8n^{2}+12n-5-\left(-5\right)=12-\left(-5\right)
Add 5 to both sides of the equation.
8n^{2}+12n=12-\left(-5\right)
Subtracting -5 from itself leaves 0.
8n^{2}+12n=17
Subtract -5 from 12.
\frac{8n^{2}+12n}{8}=\frac{17}{8}
Divide both sides by 8.
n^{2}+\frac{12}{8}n=\frac{17}{8}
Dividing by 8 undoes the multiplication by 8.
n^{2}+\frac{3}{2}n=\frac{17}{8}
Reduce the fraction \frac{12}{8} to lowest terms by extracting and canceling out 4.
n^{2}+\frac{3}{2}n+\left(\frac{3}{4}\right)^{2}=\frac{17}{8}+\left(\frac{3}{4}\right)^{2}
Divide \frac{3}{2}, the coefficient of the x term, by 2 to get \frac{3}{4}. Then add the square of \frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}+\frac{3}{2}n+\frac{9}{16}=\frac{17}{8}+\frac{9}{16}
Square \frac{3}{4} by squaring both the numerator and the denominator of the fraction.
n^{2}+\frac{3}{2}n+\frac{9}{16}=\frac{43}{16}
Add \frac{17}{8} to \frac{9}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(n+\frac{3}{4}\right)^{2}=\frac{43}{16}
Factor n^{2}+\frac{3}{2}n+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+\frac{3}{4}\right)^{2}}=\sqrt{\frac{43}{16}}
Take the square root of both sides of the equation.
n+\frac{3}{4}=\frac{\sqrt{43}}{4} n+\frac{3}{4}=-\frac{\sqrt{43}}{4}
Simplify.
n=\frac{\sqrt{43}-3}{4} n=\frac{-\sqrt{43}-3}{4}
Subtract \frac{3}{4} from both sides of the equation.