Factor
4\left(j-1\right)\left(2j+7\right)
Evaluate
4\left(j-1\right)\left(2j+7\right)
Share
Copied to clipboard
4\left(2j^{2}+5j-7\right)
Factor out 4.
a+b=5 ab=2\left(-7\right)=-14
Consider 2j^{2}+5j-7. Factor the expression by grouping. First, the expression needs to be rewritten as 2j^{2}+aj+bj-7. To find a and b, set up a system to be solved.
-1,14 -2,7
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -14.
-1+14=13 -2+7=5
Calculate the sum for each pair.
a=-2 b=7
The solution is the pair that gives sum 5.
\left(2j^{2}-2j\right)+\left(7j-7\right)
Rewrite 2j^{2}+5j-7 as \left(2j^{2}-2j\right)+\left(7j-7\right).
2j\left(j-1\right)+7\left(j-1\right)
Factor out 2j in the first and 7 in the second group.
\left(j-1\right)\left(2j+7\right)
Factor out common term j-1 by using distributive property.
4\left(j-1\right)\left(2j+7\right)
Rewrite the complete factored expression.
8j^{2}+20j-28=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
j=\frac{-20±\sqrt{20^{2}-4\times 8\left(-28\right)}}{2\times 8}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
j=\frac{-20±\sqrt{400-4\times 8\left(-28\right)}}{2\times 8}
Square 20.
j=\frac{-20±\sqrt{400-32\left(-28\right)}}{2\times 8}
Multiply -4 times 8.
j=\frac{-20±\sqrt{400+896}}{2\times 8}
Multiply -32 times -28.
j=\frac{-20±\sqrt{1296}}{2\times 8}
Add 400 to 896.
j=\frac{-20±36}{2\times 8}
Take the square root of 1296.
j=\frac{-20±36}{16}
Multiply 2 times 8.
j=\frac{16}{16}
Now solve the equation j=\frac{-20±36}{16} when ± is plus. Add -20 to 36.
j=1
Divide 16 by 16.
j=-\frac{56}{16}
Now solve the equation j=\frac{-20±36}{16} when ± is minus. Subtract 36 from -20.
j=-\frac{7}{2}
Reduce the fraction \frac{-56}{16} to lowest terms by extracting and canceling out 8.
8j^{2}+20j-28=8\left(j-1\right)\left(j-\left(-\frac{7}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 1 for x_{1} and -\frac{7}{2} for x_{2}.
8j^{2}+20j-28=8\left(j-1\right)\left(j+\frac{7}{2}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
8j^{2}+20j-28=8\left(j-1\right)\times \frac{2j+7}{2}
Add \frac{7}{2} to j by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
8j^{2}+20j-28=4\left(j-1\right)\left(2j+7\right)
Cancel out 2, the greatest common factor in 8 and 2.
x ^ 2 +\frac{5}{2}x -\frac{7}{2} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 8
r + s = -\frac{5}{2} rs = -\frac{7}{2}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{5}{4} - u s = -\frac{5}{4} + u
Two numbers r and s sum up to -\frac{5}{2} exactly when the average of the two numbers is \frac{1}{2}*-\frac{5}{2} = -\frac{5}{4}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{5}{4} - u) (-\frac{5}{4} + u) = -\frac{7}{2}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{7}{2}
\frac{25}{16} - u^2 = -\frac{7}{2}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{7}{2}-\frac{25}{16} = -\frac{81}{16}
Simplify the expression by subtracting \frac{25}{16} on both sides
u^2 = \frac{81}{16} u = \pm\sqrt{\frac{81}{16}} = \pm \frac{9}{4}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{5}{4} - \frac{9}{4} = -3.500 s = -\frac{5}{4} + \frac{9}{4} = 1
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}