Solve for x
x=-\frac{2iy+\left(-3-8i\right)}{y+2i}
y\neq -2i
Solve for y
y=-\frac{2ix+\left(-3-8i\right)}{x+2i}
x\neq -2i
Share
Copied to clipboard
8i=xy+2ix+2iy-4+1
Use the distributive property to multiply x+2i by y+2i.
8i=xy+2ix+2iy-3
Add -4 and 1 to get -3.
xy+2ix+2iy-3=8i
Swap sides so that all variable terms are on the left hand side.
xy+2ix-3=8i-2iy
Subtract 2iy from both sides.
xy+2ix=8i-2iy+3
Add 3 to both sides.
\left(y+2i\right)x=8i-2iy+3
Combine all terms containing x.
\left(y+2i\right)x=3+8i-2iy
The equation is in standard form.
\frac{\left(y+2i\right)x}{y+2i}=\frac{3+8i-2iy}{y+2i}
Divide both sides by y+2i.
x=\frac{3+8i-2iy}{y+2i}
Dividing by y+2i undoes the multiplication by y+2i.
8i=xy+2ix+2iy-4+1
Use the distributive property to multiply x+2i by y+2i.
8i=xy+2ix+2iy-3
Add -4 and 1 to get -3.
xy+2ix+2iy-3=8i
Swap sides so that all variable terms are on the left hand side.
xy+2iy-3=8i-2ix
Subtract 2ix from both sides.
xy+2iy=8i-2ix+3
Add 3 to both sides.
\left(x+2i\right)y=8i-2ix+3
Combine all terms containing y.
\left(x+2i\right)y=3+8i-2ix
The equation is in standard form.
\frac{\left(x+2i\right)y}{x+2i}=\frac{3+8i-2ix}{x+2i}
Divide both sides by x+2i.
y=\frac{3+8i-2ix}{x+2i}
Dividing by x+2i undoes the multiplication by x+2i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}