Skip to main content
Solve for h
Tick mark Image

Similar Problems from Web Search

Share

8h^{2}=4
Add 4 to both sides. Anything plus zero gives itself.
h^{2}=\frac{4}{8}
Divide both sides by 8.
h^{2}=\frac{1}{2}
Reduce the fraction \frac{4}{8} to lowest terms by extracting and canceling out 4.
h=\frac{\sqrt{2}}{2} h=-\frac{\sqrt{2}}{2}
Take the square root of both sides of the equation.
8h^{2}-4=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
h=\frac{0±\sqrt{0^{2}-4\times 8\left(-4\right)}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, 0 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
h=\frac{0±\sqrt{-4\times 8\left(-4\right)}}{2\times 8}
Square 0.
h=\frac{0±\sqrt{-32\left(-4\right)}}{2\times 8}
Multiply -4 times 8.
h=\frac{0±\sqrt{128}}{2\times 8}
Multiply -32 times -4.
h=\frac{0±8\sqrt{2}}{2\times 8}
Take the square root of 128.
h=\frac{0±8\sqrt{2}}{16}
Multiply 2 times 8.
h=\frac{\sqrt{2}}{2}
Now solve the equation h=\frac{0±8\sqrt{2}}{16} when ± is plus.
h=-\frac{\sqrt{2}}{2}
Now solve the equation h=\frac{0±8\sqrt{2}}{16} when ± is minus.
h=\frac{\sqrt{2}}{2} h=-\frac{\sqrt{2}}{2}
The equation is now solved.