Evaluate
8\left(h+1\right)^{2}
Expand
8h^{2}+16h+8
Share
Copied to clipboard
8h^{2}-\left(16h^{2}+8h+1\right)+\left(4h+3\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4h+1\right)^{2}.
8h^{2}-16h^{2}-8h-1+\left(4h+3\right)^{2}
To find the opposite of 16h^{2}+8h+1, find the opposite of each term.
-8h^{2}-8h-1+\left(4h+3\right)^{2}
Combine 8h^{2} and -16h^{2} to get -8h^{2}.
-8h^{2}-8h-1+16h^{2}+24h+9
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4h+3\right)^{2}.
8h^{2}-8h-1+24h+9
Combine -8h^{2} and 16h^{2} to get 8h^{2}.
8h^{2}+16h-1+9
Combine -8h and 24h to get 16h.
8h^{2}+16h+8
Add -1 and 9 to get 8.
8h^{2}-\left(16h^{2}+8h+1\right)+\left(4h+3\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4h+1\right)^{2}.
8h^{2}-16h^{2}-8h-1+\left(4h+3\right)^{2}
To find the opposite of 16h^{2}+8h+1, find the opposite of each term.
-8h^{2}-8h-1+\left(4h+3\right)^{2}
Combine 8h^{2} and -16h^{2} to get -8h^{2}.
-8h^{2}-8h-1+16h^{2}+24h+9
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4h+3\right)^{2}.
8h^{2}-8h-1+24h+9
Combine -8h^{2} and 16h^{2} to get 8h^{2}.
8h^{2}+16h-1+9
Combine -8h and 24h to get 16h.
8h^{2}+16h+8
Add -1 and 9 to get 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}