Solve for b
b=\frac{3\sqrt[4]{2}e^{\frac{7\pi i}{8}}}{2}\approx -1.64802617+0.682634791i
b=\frac{3\sqrt[4]{2}e^{\frac{15\pi i}{8}}}{2}\approx 1.64802617-0.682634791i
b=\frac{3\sqrt[4]{2}e^{\frac{9\pi i}{8}}}{2}\approx -1.64802617-0.682634791i
b=\frac{3\sqrt[4]{2}e^{\frac{\pi i}{8}}}{2}\approx 1.64802617+0.682634791i
Share
Copied to clipboard
8t^{2}-36t+81=0
Substitute t for b^{2}.
t=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 8\times 81}}{2\times 8}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 8 for a, -36 for b, and 81 for c in the quadratic formula.
t=\frac{36±\sqrt{-1296}}{16}
Do the calculations.
t=\frac{9}{4}+\frac{9}{4}i t=\frac{9}{4}-\frac{9}{4}i
Solve the equation t=\frac{36±\sqrt{-1296}}{16} when ± is plus and when ± is minus.
b=-\frac{3\sqrt[4]{2}e^{\frac{\pi i}{8}}}{2} b=\frac{3\sqrt[4]{2}e^{\frac{\pi i}{8}}}{2} b=-\frac{\sqrt[4]{2}\times \left(3i\right)e^{\frac{3\pi i}{8}}}{2} b=\frac{\sqrt[4]{2}\times \left(3i\right)e^{\frac{3\pi i}{8}}}{2}
Since b=t^{2}, the solutions are obtained by evaluating b=±\sqrt{t} for each t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}