Solve for a
a=-9-\frac{5}{x}
x\neq 0
Solve for x
x=-\frac{5}{a+9}
a\neq -9
Graph
Share
Copied to clipboard
8-9x-9=ax+4
Use the distributive property to multiply -9 by x+1.
-1-9x=ax+4
Subtract 9 from 8 to get -1.
ax+4=-1-9x
Swap sides so that all variable terms are on the left hand side.
ax=-1-9x-4
Subtract 4 from both sides.
ax=-5-9x
Subtract 4 from -1 to get -5.
xa=-9x-5
The equation is in standard form.
\frac{xa}{x}=\frac{-9x-5}{x}
Divide both sides by x.
a=\frac{-9x-5}{x}
Dividing by x undoes the multiplication by x.
a=-9-\frac{5}{x}
Divide -5-9x by x.
8-9x-9=ax+4
Use the distributive property to multiply -9 by x+1.
-1-9x=ax+4
Subtract 9 from 8 to get -1.
-1-9x-ax=4
Subtract ax from both sides.
-9x-ax=4+1
Add 1 to both sides.
-9x-ax=5
Add 4 and 1 to get 5.
\left(-9-a\right)x=5
Combine all terms containing x.
\left(-a-9\right)x=5
The equation is in standard form.
\frac{\left(-a-9\right)x}{-a-9}=\frac{5}{-a-9}
Divide both sides by -9-a.
x=\frac{5}{-a-9}
Dividing by -9-a undoes the multiplication by -9-a.
x=-\frac{5}{a+9}
Divide 5 by -9-a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}