Solve for y
y=-1
Graph
Share
Copied to clipboard
8-2y=\frac{12}{3}+\frac{16}{3}-\frac{2}{3}y
Convert 4 to fraction \frac{12}{3}.
8-2y=\frac{12+16}{3}-\frac{2}{3}y
Since \frac{12}{3} and \frac{16}{3} have the same denominator, add them by adding their numerators.
8-2y=\frac{28}{3}-\frac{2}{3}y
Add 12 and 16 to get 28.
8-2y+\frac{2}{3}y=\frac{28}{3}
Add \frac{2}{3}y to both sides.
8-\frac{4}{3}y=\frac{28}{3}
Combine -2y and \frac{2}{3}y to get -\frac{4}{3}y.
-\frac{4}{3}y=\frac{28}{3}-8
Subtract 8 from both sides.
-\frac{4}{3}y=\frac{28}{3}-\frac{24}{3}
Convert 8 to fraction \frac{24}{3}.
-\frac{4}{3}y=\frac{28-24}{3}
Since \frac{28}{3} and \frac{24}{3} have the same denominator, subtract them by subtracting their numerators.
-\frac{4}{3}y=\frac{4}{3}
Subtract 24 from 28 to get 4.
y=\frac{4}{3}\left(-\frac{3}{4}\right)
Multiply both sides by -\frac{3}{4}, the reciprocal of -\frac{4}{3}.
y=\frac{4\left(-3\right)}{3\times 4}
Multiply \frac{4}{3} times -\frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
y=\frac{-3}{3}
Cancel out 4 in both numerator and denominator.
y=-1
Divide -3 by 3 to get -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}