Solve for w
w=\frac{1}{5}=0.2
Share
Copied to clipboard
8-2w-\left(-3\right)=-4\left(w-5\right)-\left(3w+8\right)
To find the opposite of 2w-3, find the opposite of each term.
8-2w+3=-4\left(w-5\right)-\left(3w+8\right)
The opposite of -3 is 3.
11-2w=-4\left(w-5\right)-\left(3w+8\right)
Add 8 and 3 to get 11.
11-2w=-4w+20-\left(3w+8\right)
Use the distributive property to multiply -4 by w-5.
11-2w=-4w+20-3w-8
To find the opposite of 3w+8, find the opposite of each term.
11-2w=-7w+20-8
Combine -4w and -3w to get -7w.
11-2w=-7w+12
Subtract 8 from 20 to get 12.
11-2w+7w=12
Add 7w to both sides.
11+5w=12
Combine -2w and 7w to get 5w.
5w=12-11
Subtract 11 from both sides.
5w=1
Subtract 11 from 12 to get 1.
w=\frac{1}{5}
Divide both sides by 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}