Solve for x (complex solution)
x=\frac{9+\sqrt{15}i}{16}\approx 0.5625+0.242061459i
x=\frac{-\sqrt{15}i+9}{16}\approx 0.5625-0.242061459i
Graph
Share
Copied to clipboard
8x\left(x-1\right)\left(x+1\right)=x^{2}-2x-3
Variable x cannot be equal to any of the values -1,1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)\left(x+1\right).
\left(8x^{2}-8x\right)\left(x+1\right)=x^{2}-2x-3
Use the distributive property to multiply 8x by x-1.
8x^{3}-8x=x^{2}-2x-3
Use the distributive property to multiply 8x^{2}-8x by x+1 and combine like terms.
8x^{3}-8x-x^{2}=-2x-3
Subtract x^{2} from both sides.
8x^{3}-8x-x^{2}+2x=-3
Add 2x to both sides.
8x^{3}-6x-x^{2}=-3
Combine -8x and 2x to get -6x.
8x^{3}-6x-x^{2}+3=0
Add 3 to both sides.
8x^{3}-x^{2}-6x+3=0
Rearrange the equation to put it in standard form. Place the terms in order from highest to lowest power.
±\frac{3}{8},±\frac{3}{4},±\frac{3}{2},±3,±\frac{1}{8},±\frac{1}{4},±\frac{1}{2},±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 3 and q divides the leading coefficient 8. List all candidates \frac{p}{q}.
x=-1
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
8x^{2}-9x+3=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide 8x^{3}-x^{2}-6x+3 by x+1 to get 8x^{2}-9x+3. Solve the equation where the result equals to 0.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 8\times 3}}{2\times 8}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 8 for a, -9 for b, and 3 for c in the quadratic formula.
x=\frac{9±\sqrt{-15}}{16}
Do the calculations.
x=\frac{-\sqrt{15}i+9}{16} x=\frac{9+\sqrt{15}i}{16}
Solve the equation 8x^{2}-9x+3=0 when ± is plus and when ± is minus.
x\in \emptyset
Remove the values that the variable cannot be equal to.
x=-1 x=\frac{-\sqrt{15}i+9}{16} x=\frac{9+\sqrt{15}i}{16}
List all found solutions.
x=\frac{9+\sqrt{15}i}{16} x=\frac{-\sqrt{15}i+9}{16}
Variable x cannot be equal to -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}