Solve for x
x = \frac{37}{11} = 3\frac{4}{11} \approx 3.363636364
Graph
Share
Copied to clipboard
40-8x=\frac{4}{5}\left(x+13\right)
Use the distributive property to multiply 8 by 5-x.
40-8x=\frac{4}{5}x+\frac{4}{5}\times 13
Use the distributive property to multiply \frac{4}{5} by x+13.
40-8x=\frac{4}{5}x+\frac{4\times 13}{5}
Express \frac{4}{5}\times 13 as a single fraction.
40-8x=\frac{4}{5}x+\frac{52}{5}
Multiply 4 and 13 to get 52.
40-8x-\frac{4}{5}x=\frac{52}{5}
Subtract \frac{4}{5}x from both sides.
40-\frac{44}{5}x=\frac{52}{5}
Combine -8x and -\frac{4}{5}x to get -\frac{44}{5}x.
-\frac{44}{5}x=\frac{52}{5}-40
Subtract 40 from both sides.
-\frac{44}{5}x=\frac{52}{5}-\frac{200}{5}
Convert 40 to fraction \frac{200}{5}.
-\frac{44}{5}x=\frac{52-200}{5}
Since \frac{52}{5} and \frac{200}{5} have the same denominator, subtract them by subtracting their numerators.
-\frac{44}{5}x=-\frac{148}{5}
Subtract 200 from 52 to get -148.
x=-\frac{148}{5}\left(-\frac{5}{44}\right)
Multiply both sides by -\frac{5}{44}, the reciprocal of -\frac{44}{5}.
x=\frac{-148\left(-5\right)}{5\times 44}
Multiply -\frac{148}{5} times -\frac{5}{44} by multiplying numerator times numerator and denominator times denominator.
x=\frac{740}{220}
Do the multiplications in the fraction \frac{-148\left(-5\right)}{5\times 44}.
x=\frac{37}{11}
Reduce the fraction \frac{740}{220} to lowest terms by extracting and canceling out 20.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}