Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{24y}{y_{2}}\text{, }&y_{2}\neq 0\\x\in \mathrm{C}\text{, }&y=0\text{ and }y_{2}=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{24y}{y_{2}}\text{, }&y_{2}\neq 0\\x\in \mathrm{R}\text{, }&y=0\text{ and }y_{2}=0\end{matrix}\right.
Solve for y
y=\frac{xy_{2}}{24}
Graph
Share
Copied to clipboard
24y=xy_{2}
Multiply 8 and 3 to get 24.
xy_{2}=24y
Swap sides so that all variable terms are on the left hand side.
y_{2}x=24y
The equation is in standard form.
\frac{y_{2}x}{y_{2}}=\frac{24y}{y_{2}}
Divide both sides by y_{2}.
x=\frac{24y}{y_{2}}
Dividing by y_{2} undoes the multiplication by y_{2}.
24y=xy_{2}
Multiply 8 and 3 to get 24.
xy_{2}=24y
Swap sides so that all variable terms are on the left hand side.
y_{2}x=24y
The equation is in standard form.
\frac{y_{2}x}{y_{2}}=\frac{24y}{y_{2}}
Divide both sides by y_{2}.
x=\frac{24y}{y_{2}}
Dividing by y_{2} undoes the multiplication by y_{2}.
24y=xy_{2}
Multiply 8 and 3 to get 24.
\frac{24y}{24}=\frac{xy_{2}}{24}
Divide both sides by 24.
y=\frac{xy_{2}}{24}
Dividing by 24 undoes the multiplication by 24.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}