Factor
\left(x-1\right)\left(x+1\right)\left(8x^{2}+9\right)
Evaluate
8x^{4}+x^{2}-9
Graph
Share
Copied to clipboard
8x^{4}+x^{2}-9=0
To factor the expression, solve the equation where it equals to 0.
±\frac{9}{8},±\frac{9}{4},±\frac{9}{2},±9,±\frac{3}{8},±\frac{3}{4},±\frac{3}{2},±3,±\frac{1}{8},±\frac{1}{4},±\frac{1}{2},±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -9 and q divides the leading coefficient 8. List all candidates \frac{p}{q}.
x=1
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
8x^{3}+8x^{2}+9x+9=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide 8x^{4}+x^{2}-9 by x-1 to get 8x^{3}+8x^{2}+9x+9. To factor the result, solve the equation where it equals to 0.
±\frac{9}{8},±\frac{9}{4},±\frac{9}{2},±9,±\frac{3}{8},±\frac{3}{4},±\frac{3}{2},±3,±\frac{1}{8},±\frac{1}{4},±\frac{1}{2},±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 9 and q divides the leading coefficient 8. List all candidates \frac{p}{q}.
x=-1
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
8x^{2}+9=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide 8x^{3}+8x^{2}+9x+9 by x+1 to get 8x^{2}+9. To factor the result, solve the equation where it equals to 0.
x=\frac{0±\sqrt{0^{2}-4\times 8\times 9}}{2\times 8}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 8 for a, 0 for b, and 9 for c in the quadratic formula.
x=\frac{0±\sqrt{-288}}{16}
Do the calculations.
8x^{2}+9
Polynomial 8x^{2}+9 is not factored since it does not have any rational roots.
\left(x-1\right)\left(x+1\right)\left(8x^{2}+9\right)
Rewrite the factored expression using the obtained roots.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}