Solve for x
x = \frac{\sqrt{41} + 3}{8} \approx 1.17539053
x=\frac{3-\sqrt{41}}{8}\approx -0.42539053
Graph
Share
Copied to clipboard
8x^{2}-6x-4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 8\left(-4\right)}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, -6 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 8\left(-4\right)}}{2\times 8}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36-32\left(-4\right)}}{2\times 8}
Multiply -4 times 8.
x=\frac{-\left(-6\right)±\sqrt{36+128}}{2\times 8}
Multiply -32 times -4.
x=\frac{-\left(-6\right)±\sqrt{164}}{2\times 8}
Add 36 to 128.
x=\frac{-\left(-6\right)±2\sqrt{41}}{2\times 8}
Take the square root of 164.
x=\frac{6±2\sqrt{41}}{2\times 8}
The opposite of -6 is 6.
x=\frac{6±2\sqrt{41}}{16}
Multiply 2 times 8.
x=\frac{2\sqrt{41}+6}{16}
Now solve the equation x=\frac{6±2\sqrt{41}}{16} when ± is plus. Add 6 to 2\sqrt{41}.
x=\frac{\sqrt{41}+3}{8}
Divide 6+2\sqrt{41} by 16.
x=\frac{6-2\sqrt{41}}{16}
Now solve the equation x=\frac{6±2\sqrt{41}}{16} when ± is minus. Subtract 2\sqrt{41} from 6.
x=\frac{3-\sqrt{41}}{8}
Divide 6-2\sqrt{41} by 16.
x=\frac{\sqrt{41}+3}{8} x=\frac{3-\sqrt{41}}{8}
The equation is now solved.
8x^{2}-6x-4=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
8x^{2}-6x-4-\left(-4\right)=-\left(-4\right)
Add 4 to both sides of the equation.
8x^{2}-6x=-\left(-4\right)
Subtracting -4 from itself leaves 0.
8x^{2}-6x=4
Subtract -4 from 0.
\frac{8x^{2}-6x}{8}=\frac{4}{8}
Divide both sides by 8.
x^{2}+\left(-\frac{6}{8}\right)x=\frac{4}{8}
Dividing by 8 undoes the multiplication by 8.
x^{2}-\frac{3}{4}x=\frac{4}{8}
Reduce the fraction \frac{-6}{8} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{3}{4}x=\frac{1}{2}
Reduce the fraction \frac{4}{8} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{3}{4}x+\left(-\frac{3}{8}\right)^{2}=\frac{1}{2}+\left(-\frac{3}{8}\right)^{2}
Divide -\frac{3}{4}, the coefficient of the x term, by 2 to get -\frac{3}{8}. Then add the square of -\frac{3}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3}{4}x+\frac{9}{64}=\frac{1}{2}+\frac{9}{64}
Square -\frac{3}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3}{4}x+\frac{9}{64}=\frac{41}{64}
Add \frac{1}{2} to \frac{9}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{8}\right)^{2}=\frac{41}{64}
Factor x^{2}-\frac{3}{4}x+\frac{9}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{8}\right)^{2}}=\sqrt{\frac{41}{64}}
Take the square root of both sides of the equation.
x-\frac{3}{8}=\frac{\sqrt{41}}{8} x-\frac{3}{8}=-\frac{\sqrt{41}}{8}
Simplify.
x=\frac{\sqrt{41}+3}{8} x=\frac{3-\sqrt{41}}{8}
Add \frac{3}{8} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}